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Preface

Artificia intelligence is ahard subject to learn. | have written abook to make it easier. | explain difficult
conceptsin asimple, concrete way. | have organized the material in anew and (| feel) clearer way, away
in which the chapters are in alogical sequence and not just unrelated topics. | believe that with this book,
readers can learn the key concepts of artificial intelligence faster and better than with other books. This
book isintended for al first coursesin artificial intelligence at the undergraduate or graduate level,
requiring background of only afew computer science courses. It can also be used on one's own.

Students often complain that while they understand the terminology of artificial intelligence, they don't
have a gut feeling for what's going on or how you apply the concepts to a situation. One cause is the
complexity of artificial intelligence. Another is the unnecessary baggage, like overly formal logical
calculi, that some books and teachers saddle students with. But an equally important cause is the often
poor connection made between abstract concepts and their use. So | considered it essential to integrate
practical programming examples into this book, in the style of programming language and data structures
books. (I stress practical, not missionaries and cannibals, definitions of "grandfather”, or rules for
identifying animalsin zoos--at least rarely.) This book has about 500 chunks of code. Clear, concrete
formalization of artificial intelligence ideas by programs and program fragmentsis all the more critical
today with commercialization and media discovery of the field, which has caused a good deal of
throwing around of artificial intelligence terms by people who don't understand them.

But artificial intelligenceisatool for complex problems, and its program examples can easily be
forbiddingly complicated. Books attempting to explain artificial intelligence with examples from the
programming language Lisp have repeatedly demonstrated this. But | have come to see that the fault lies
more with Lisp than with artificial intelligence. Lisp has been the primary language of artificial
intelligence for many years, but it is alow-level language, too low for most students. Designed in the
early 1960s, Lisp reflects the then-primitive understanding of good programming, and requires the
programmer to worry considerably about actual memory references (pointers). Furthermore, Lisp hasa
weird, hard-to-read syntax unlike that of any other programming language. To make matters worse, the
widespread adoption of Common Lisp as a de facto standard has discouraged research on improved

Lisps.

Fortunately there is an alternative: Prolog. Developed in Europe in the 1970s, the language Prolog has
steadily gained enthusiastic converts, bolstered by its surprise choice as the initial language of the
Japanese Fifth Generation Computer project. Prolog has three positive features that give it key
advantages over Lisp. First, Prolog syntax and semantics are much closer to formal logic, the most
common way of representing facts and reasoning methods used in the artificial intelligence literature.
Second, Prolog provides automatic backtracking, afeature making for considerably easier "search”, the
most central of all artificial intelligence techniques. Third, Prolog supports multidirectional (or multiuse)
reasoning, in which arguments to a procedure can freely be designated inputs and outputs in different
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ways in different procedure calls, so that the same procedure definition can be used for many different
kinds of reasoning. Besides this, new implementation techniques have given current versions of Prolog
closein speed to Lisp implementations, so efficiency is no longer areason to prefer Lisp.

But Prolog also, | believe, makes teaching artificial intelligence easier. This book is a demonstration.
This book is an organic whole, not arandom collection of chapters on random topics. My chaptersform a
steady, logical progression, from knowledge representation to inferences on the representation, to rule-
based systems codifying classes of inferences, to search as an abstraction of rule-based systems, to
extensions of the methodology, and finally to evaluation of systems. Topics hard to understand like
search, the cut predicate, relaxation, and resolution are introduced late and only with careful preparation.
In each chapter, details of Prolog are integrated with major concepts of artificial intelligence. For
instance, Chapter 2 discusses the kinds of facts about the world that one can put into computers as well as
the syntax of Prolog's way; Chapter 3 discusses automatic backtracking as well as Prolog querying;
Chapter 4 discusses inference and inheritance as well as the definition of proceduresin Prolog; Chapter 5
discusses multidirectional reasoning as well as the syntax of Prolog arithmetic; and so on. This constant
tying of theory to practice makes artificial intelligence alot more concrete. Learning is better motivated
since one doesn't need to master alot of mumbo-jumbo to get to the good stuff. | can't take much of the
credit myself: the very nature of Prolog, and particularly the advantages of the last paragraph, make it

easy.

Despite my integrated approach to the material, | think | have covered nearly al the topicsin ACM and
|EEE guidelinesfor afirst coursein artificial intelligence. Basic concepts mentioned in those guidelines
appear towards the beginning of chapters, and applications mentioned in the guidelines appear towards
the ends. Beyond the guidelines however, | have had to make tough decisions about what to leave out--a
coherent book is better than an incoherent book that covers everything. Sincethisisafirst course, |
concentrate on the hard core of artificial intelligence. So | don't discuss much how humans think (that's
psychology), or how human language works (that's linguistics), or how sensor interpretation and |ow-
level visual processing are done (that's pattern recognition), or whether computers will ever really think
(that's philosophy). | have also cut corners on hard non-central topics like computer learning and the full
formal development of predicate calculus. On the other hand, | emphasize more than other books do the
central computer science concepts of procedure calls, variable binding, list processing, tree traversal,
analysis of processing efficiency, compilation, caching, and recursion. Thisis acomputer science
textbook.

A disadvantage of my integrated approach is that chapters can't so easily be skipped. To partially
compensate, | mark some sections within chapters (usually sections towards the end) with asterisks to
indicate that they are optional to the main flow of the book. In addition, all of Chapters 7, 10, and 14 can
be omitted, and perhaps Chapters 12 and 13 too. (Chapters 7, 10, 13, and 14 provide agood basis for a
second coursein artificial intelligence, and | have used them that way myself.) Besides this, | cater to the
different needs of different readersin the exercises. Exercises are essential to learning the material in a
textbook. Unfortunately, there is little consensus about what kind of exercisesto give for coursesin
artificial intelligence. So | have provided awide variety: short-answer questions for checking basic
understanding of material, programming exercises for people who like to program, "play computer"
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exercises that have the reader simulate techniques described, application questions that have the reader
apply methods to new areas (my favorite kind of exercise because it tests real understanding of the
material), essay questions, fallacies to analyze, complexity analysis questions, and a few extended
projects suitable for teams of students. There are also some miscellaneous questions drawing on the
entire book, at the end of Chapter 15. Answersto about one third of the exercises are provided in
Appendix G, to offer readers immediate feedback on their understanding, something especially important
to those tackling this book on their own.

To make learning the difficult material of this book even easier, | provide other learning aids. | apportion
the book into short labeled sections, to make it easier for readers to chunk the material into mind-sized
bites. | provide reinforcement of key concepts with some novel graphical and tabular displays. | provide
"glass box" computer programs (that is, the opposite of "black box") for readers to study. | mark key
termsin boldface where they are defined in the text, and then group these terms into keyword lists at the
end of every chapter. | give appendices summarizing the important background material needed for this
book, conceptsin logic, recursion, and data structures. In other appendices, | summarize the Prolog
dialect of the book, make afew comments on Micro-Prolog, and provide a short bibliography (most of
the artificial intelligence literature is now either too hard or too easy for readers of this book). The major
programs of the book are available on tape from the publisher for asmall fee. Also, | have prepared an
instructor's manual .

It's not necessary to have a Prolog interpreter or compiler available to use this book, but it does make
learning easier. This book uses alimited subset of the most common dialect of Prolog, the "standard
Prolog" of Programming in Prolog by Clocksin and Méellish (second edition, Springer-Verlag, 1984).
But most exercises do not require programming.

I've tried to doublecheck all examples, programs, and exercises, but some errors may have escaped me. If
you find any, please write me in care of the publisher, or send computer mail to rowe@nps-cs.arpa.
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To the reader

Artificial intelligence draws on many different areas of computer science. It is hard to recommend
prerequisites because what you need to know is bits and pieces scattered over many different courses. At
least two quarters or semesters of computer programming in a higher-level language like Pascal is
strongly recommended, since we will introduce here a programming language several degrees more
difficult, Prolog. If you can get programming experience in Prolog, Lisp, or Logo that's even better. It
also helpsto have a coursein formal logic, though we won't use much of the fancy stuff they usually
cover in those courses; see Appendix A for what you do need to know. Artificial intelligence uses
sophisticated data structures, so a data structures course helps; see Appendix C for asummary. Finaly,
you should be familiar with recursion, because Prolog is well suited to thisway of writing programs.
Recursion is adifficult concept to understand at first, but once you get used to it you will find it easy and
natural; Appendix B provides some hints.

Solving problemsis the best way to learn artificial intelligence. So there are lots of exercises in this book,
at the ends of chapters. Please take these exercises seriously; many of them are hard, but you can really
learn from them, much more than by just passively reading the text. Artificial intelligence is difficult to
learn, and feedback really helps, especially if you're working on your own. (But don't plan to do all the
exercises: there are too many.) Exercises have code letters to indicate their special features:

--the code R means a particularly good problem recommended for all readers;
--the code A means a question that has an answer in Appendix G;

--the code H means a particularly hard problem;

--the code P means a problem requiring actual programming in Prolog;

--the code E means an essay question;

--the code G means a good group project.

In addition to exercises, each chapter has alist of key terms you should know. Think of thislist, at the
end of the text for each chapter, as a set of "review questions”.
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The symbol "*" on a section of a chapter means optional reading. These sections are either significantly
harder than the rest of the text, or significantly far from the core material.

Go to book index
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Introduction

What artificial intelligence is about

Artificial intelligence is the getting of computers to do things that seem to be intelligent. The hope is that
more intelligent computers can be more helpful to us--better able to respond to our needs and wants, and
more clever about satisfying them.

But "intelligence" is avague word. So artificial intelligence is not awell-defined field. One thing it often
means is advanced software engineering, sophisticated software techniques for hard problems that can't
be solved in any easy way. Another thing it often means is nonnumeric ways of solving problems, since
people can't handle numbers well. Nonnumeric ways are often "common sense" ways, not necessarily the
best ones. So artificial-intelligence programs--like people--are usually not perfect, and even make
mistakes.

Artificial intelligence includes:

--Getting computers to communicate with us in human languages like English, either by
printing on a computer terminal, understanding things we type on a computer terminal,
generating speech, or understanding our speech (natural language);

--Getting computers to remember complicated interrelated facts, and draw conclusions
from them (inference);

--Getting computers to plan sequences of actions to accomplish goals (planning);

--Getting computers to offer us advice based on complicated rules for various situations
(expert systems);

--Getting computers to look through cameras and see what's there (vision);
--Getting computers to move themsel ves and objects around in the real world (robotics).

WEe'll emphasize inference, planning, and expert systemsin this book because they're the "hard core" of
artificial intelligence; the other three subareas are getting quite specialized, though we'll mention them
too from time to time. All six subareas are hard; significant progressin any will require years of research.
But we've aready had enough progress to get some useful programs. These programs have created much
interest, and have stimulated recent growth of the field.
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Success is hard to measure, though. Perhaps the key issue in artificial intelligence is reductionism, the
degree to which a program fails to reflect the full complexity of human beings. Reductionism includes
how often program behavior duplicates human behavior and how much it differs when it does differ.
Reductionism is partly amoral issue because it requires moral judgments. Reductionism is also a social
Issue because it relates to automation.

Understanding artificial intelligence

Artificial intelligence techniques and ideas seem to be harder to understand than most things in computer
science, and we give you fair warning. For one thing, there are lots of details to worry about. Artificial
intelligence shows best on complex problems for which general principles don't help much, though there
are afew useful general principlesthat we'll explain in this book. This means many examplesin this
book are several pages long, unlike most of the examples in mathematics textbooks.

Complexity limits how much the programmer can understand about what is going on in an artificial-
intelligence program. Often the programs are like simulations: the programmer sets conditions on the
behavior of the program, but doesn't know what will happen once it starts. This means a different style of
programming than with traditional higher-level languages like Fortran, Pascal, PL/1, and Ada |
REFERENCE 1|, .FS | REFERENCE 1| A trademark of the U.S. Department of Defense, Ada Joint
Program Office. .FE where successive refinement of a specification can mean we know what the
program isdoing at every level of detail. But artificial-intelligence techniques, even when all their details
are hard to follow, are often the only way to solve a difficult problem.

Artificial intelligence is aso difficult to understand by its content, a funny mixture of the rigorous and
the unrigorous. Certain topics are just questions of style (like much of Chapters 2, 6, and 12), while other
topics have definite rights and wrongs (like much of Chapters 3, 5, and 11). Artificial intelligence
researchers frequently argue about style, but publish more papers about the other topics. And when rigor
IS present, it's often different from that in the other sciences and engineering: it's not numeric but logical,
in terms of truth and implication.

Clarke's Law saysthat al unexplained advanced technology islike magic. So artificial intelligence may
lose its magic as you come to understand it. Don't be discouraged. Remember, geniusis 5% inspiration
and 95% perspiration according to the best figures, though estimates vary.

Preview

This book is organized around the important central ideas of artificial intelligence rather than around
application areas. We start out (Chapters 2-5) by explaining ways of storing and using knowledge inside
computers: facts (Chapter 2), queries (Chapter 3), rules (Chapter 4), and numbers and lists (Chapter 5).
We examine rule-based systems in Chapters 6-8, an extremely important subclass of artificial
intelligence programs. We examine search techniques in Chapters 9-11, another important subclass. We
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address other important topics in Chapters 12-14: Chapter 12 on frame representations extends Chapter
2, Chapter 13 on long queries extends Chapter 3, and Chapter 14 on general logical reasoning extends
Chapter 4. We conclude in Chapter 15 with alook at evaluation and debugging of artificial intelligence
programs; that chapter is recommended for everyone, even those who haven't read al the other chapters.
To help you, appendices A-C review material on logic, recursion, and data structures respectively.
Appendix D summarizes the Prolog language subset we use in this book, Appendix E summarizes the
Micro-Prolog dialect, Appendix F gives a short bibliography, and Appendix G provides answers to some
of the exercises.
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Representing facts

If we want computers to act intelligent, we must help them. We must tell them all the common-sense
knowledge we have that they don't. This can be hard because this knowledge can be so obvious to us that
we don't realize that a computer doesn't know it too, but we must try.

Now there are many different kinds of knowledge. Without getting deep into philosophy (or specifically
epistemol ogy, the theory of knowledge), there are two main kinds: facts and reasoning procedures. Facts
are things true about the world, and reasoning procedures (or inferences) are ways to follow reasoning
chains between facts. Since facts are easier to represent than procedures, we'll consider them first, and
postpone procedures to Chapter 4.

Predicates and predicate expressions

To talk about facts we need a"language”. Artificial intelligence uses many languages and sub-languages.
But in thisintroductory book we don't want to confuse you. We'll use only one, ssimple (first-order)
predicate logic (sometimes called predicate calculus and sometimes just logic). And we'll use a
particular notation compatible with the computer programming language Prolog | REFERENCE 1|. .FS|
REFERENCE 1| In this book we use a subset of the "standard Prolog" in Clocksin and Méellish,
Programming in Prolog, second edition, Springer-Verlag, 1984. For a complete description of what we
use, see Appendix D. .FE Prolog isn't predicate logic itself; computer languages try to do things, whereas
logic just says that certain things are true and false. But Prolog does appear closeto the way logicis
usually written. That is, its grammar or syntax or form isthat of logic, but its semantics or meaning is
different.

And what isthat grammar? Formally, a predicate expression (or atomic formula, but that sounds like a
nuclear weapons secret) is a name--a predicate--followed by zero or more arguments enclosed in
parentheses and separated by commas (see Figure 2-1) | REFERENCE 2|. .FS | REFERENCE 2| Several
terms closely related to "predicate expression” are used in the logic and artificial-intelligence literature. A
literal is like a predicate expression only it can have a negation symbol in front of it (negations will be
explained in Section 3.6). A structure or compound termis like a predicate expression only it isn't
necessarily only true or false. A logical formula is astructure or a set of structures put together with
"and"s, "or"s, and "not"s. .FE Predicate names and arguments can be composed of any mixture of letters
and numbers, except that predicate names must start with alower-case letter. (Upper-case lettersfirstin a
word have a specia meaning in Prolog, as we'll explain shortly.) The underscore symbol " " aso counts
as aletter, and we will often use it to make names more readable. So these are all predicate expressions:

p(x)
qcy, 3)
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r (al pha, - 2584, bet a)

city(nonterey, california)

t uvwxy(abc345)

noar gunent s

pi (3.1416)

| ong_predi cate_nane(l ong_ar gunent nane, 3)

We can put predicate expressions like these into computers. They can represent facts true about the
world. But what exactly do these expressions mean (their semantics)? Actually, anything you want--it's
up to you to assign reasonable and consistent interpretations to the symbols and the way they're put
together, though there are some conventions. The better job you do, the more reasonabl e the conclusions
you'll reach from all these facts.

Predicates indicating types

Predicates can mean many things. But they do fall into categories. We summarize the major categoriesin
Figure 2-2.

One thing they can mean is something like data-type information in alanguage like Pascal or Ada.
Except that in artificial intelligence there are generally alot more types than there are in most
programming, because there must be a type for every category in the world that we want the computer to
know about.

For instance, suppose we want the computer to know about some U.S. Navy ships | REFERENCE 3|. We
.FS| REFERENCE 3| The occasiona use of military examplesin this book is deliberate: to serve asa
reminder that much artificial intelligence work in the United States has been, and remains, supported by
the military. We make no endorsements. .FE could tell it

shi p(enterprise).
to say that the Enterprise is a ship (remember we must use lower case). Or in other words, the Enterprise

Is an example of the "ship" type. We will put periods at the end of facts because Prolog uses the period to
signal the end of aline. We could also tell the computer

shi p(kennedy).
shi p(vi nson) .

to give it the names of two more ships--two more things of the "ship" type. Here ship is atype predicate.

If we knew code numbers for planes we could tell the computer about them too, using the code numbers
as names.

pl ane(p54862).

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap2.html (2 of 13) [23/04/2002 17:38:34]



http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap2.html

pl ane(p79313).
Similarly, we can label people with types:

comodor e(r_h_shumaker).
president (r_reagan).

and label more abstract things like institutions:

uni versi ty(naval _postgraduate_school).
uni versity(stanford_university).

and label concepts:

day_ of week(nonday).
day_ of week(tuesday).
day of week(wednesday) .

A thing can have more than one type. For instance:

shi p(enterprise).
ameri can(enterprise).

And types can have subtypes:

carrier(vinson).
ship(carrier).

These are dl type predicates, and they are all have one argument. The argument is the name of some
thing in the world, and the predicate name is the class or category it belongs to. So the predicate nameis
mor e general than the argument name; thisis usual for predicate namesin artificial intelligence. So it
wouldn't be as good to say

enterprise(ship).
kennedy(shi p).

About types

We've said these predicates are like the types in computer languages, but there are some differences. The
main one is that they need never be defined anywhere. If for instance we are using Pascal, we either use
the built-in types (integer, real, character, array, and pointer) or define the type we want in terms of those
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built-in types. But for artificial intelligence, the type (predicate) names are just arbitrary codes used in
lookup. Thisis because you can put integers and characters in a computer, but not a ship. Y ou can't even
put in afull representation of a ship, or afull representation of any other real object--real objects have too
many complexities, while integers and characters are abstractions.

How then, if we expect the computer to be intelligent, will it ever know what a ship is? Much the way
people know. Ships are defined in adictionary using the concept of a vehicle, the concept of water, the
concept of floating, and so on. A dictionary might say aship is"an oceangoing vessel". But it might
define "vessel" as a"craft for travelling on water”, and "craft”" as an "individual ship"--so the definitions
are circular, as all dictionary definitions are sooner or later. But we can indirectly figure out what is being
talked about by the secondary words like "oceangoing" and “travelling”. So words must be defined in
terms of one another.

So we won't expect each type predicate to be implemented (that is, understood by a computer) by a
separate procedure or processing routine. The same holds for arguments. In fact, we could store al
predicate names and arguments the same way in the computer, as characters. Thisis abit wasteful of
computer storage space--so some Prolog dialects do store numbers differently--but there's nothing wrong
philosophically with it.

Good naming

So predicate and argument names can be arbitrary; we just have to remember what they represent. But
one name can be better than another, if it is easier to remember what it means. Writing facts for an
artificial-intelligence program to use is a kind of programming, and we should follow the usual rules of
good programming style. In choosing names, we suggest these guidelines:

1. As much as possible, use everyday English words for names. If you need more than one
word, use the underscore character between them for clarity, likein day_of week (though
sometimes you can leave out the underscores like in dayofweek when thereading is
reasonably clear).

2. Choose names that describe their function precisely. For instance, use day _of week
instead of day, which could describe both monday and october 19 1985.

3. Avoid names with multiple meanings. For instance, if there isa Commander Kennedy as
well as a ship named Kennedy, include the first initial of the person; or if you call the
Enterprise a"ship", don't also say that a unit "shipped" somewhere.

4. Avoid numbers in names, with two exceptions: arithmetic (see Chapter 5) and closely
related variables and predicates (like X and X2 in Section 5.5 and iterate and iterate2 in
Section 10.8).
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5. Abbreviate only when absolutely necessary. Since artificial intelligence programs often
use many names, abbreviations can be confusing.

6. Predicate names should be more general than their argument names, but not so general
that they don't really mean anything (for then facts can't be indexed well).

7. A few predicate names are reserved or "specia” to Prolog, so you can't use them for
your own predicates.

8. Of course, always use the same name for the same thing.

Property predicates
We can tell the computer (or assert):

shi p(enterprise).
gray(enterprise).
bi g(enterprise).

which could mean "The Enterpriseisaship, itisgray, and itishig." (Never mind that "big" is vague; we
could define it as "more than 800 feet long", and "gray" and even "ship" are vague to a lesser extent (isa
toy ship aship? and is an imaginary ship a ship?), and much human knowledge is vague anyway.) Or this
could mean the Enterprise is amember of the class of ships, amember of the class of gray things, and a
member of the class of big things. But those last two phrases awkward. "Gray" and "big" are adjectives,
not nouns like "ship", and they should be treated differently.

So we'll represent properties of objects as property predicate expressions, two-argument expressions in
which the predicate name is the name of a property, the first argument is the name of an object, and the
second argument is the value of the property. The preceding example could be rewritten better as:

shi p(enterprise).
color(enterprise,gray).
si ze(enterprise, big).

This has the advantage of using predicate names that are more general. It also shows the relation between
gray and enterprise, and that between big and enterprise: color and size are the property names for
which gray and big are the values. So we've made some implicit (unstated "common-sense') knowledge
explicit (stated), akey goal in artificial intelligence.

Again, the computer won't actually know what gray and big mean if we type in the preceding three
example lines; those are just codes that it uses for comparison. For instance, if the computer also knows
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col or (kennedy, gray).

then it knows the Enterprise and the Kennedy have the same color, though it doesn't know what a " color"
Is (but don't blame it, because most computers don't have eyes).

An important class of property predicates concern space and time. For instance

| ocati on(enterprise, 14n35e).
| ast _docki ng(enterprise, 16feb85).

could mean that the Enterpriseis currently at latitude 14N and longitude 35E, and its last docking was on
February 16, 1985.

Predicates for relationships

Perhaps the most important predicates of all relate two different things. Such relationship predicates are
important because a lot of human reasoning seems to use them--people need to relate ideas. For instance,
we can use apart_of predicate of two arguments which says that its first argument is a component within
its second argument. We could give as facts:

part_of (enterprise,u_s_navy).

part _of (u_s navy, u_s governnent).

part of (naval postgraduate _school ,u_s governnent).
part of (propul sion_system ship).

In other words, the Enterprise is part of the U.S. Navy, the Navy is part of the U.S. government, the
Naval Postgraduate School is part of the U.S. government, and the propulsion system is part of aship. An
owns relationship predicate can say that something is owned by someone:

owns(tom fido).
owns(tomtons_car).

These facts say that Tom owns two things. something called fido, and an unnamed car which we can just
refer to astoms car.

It's easy to get confused about argument order in relationship predicate expressions. So welll try to follow
this convention: if the predicate name isinserted between the two arguments, the result will be closeto
an English sentence giving the correct meaning. So if weinsert "owns' between "tom" and "fido" we get
"Tom owns Fido", and if we insert "part of" between "enterprise" and "u. s. navy" we get "Enterprise part
of U. S. Navy".
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An important class of relationship predicates relates things in space and time. A real-world object can be
north, south, east, west, etc. of another object. Viewed by afixed observer, an object can also be right,
left, above, below, in front, and behind another object. We can describe a picture with these predicates.
Similarly, an event in time can be before, after, during, overlapping, or simultaneous with another event,
so we can describe history with these predicates.

Relationship predicates can describe rel ationships between people. For instance, the boss_of relationship
Isimportant for describing bureaucracies, an important application of artificial intelligence. It saysthat a
person (first argument) is the boss of another person (second argument), and this shows direction of
responsibility. People can also be related by kinship relationship predicates (father, mother, child,
uncle, cousin, stepfather, half-brother, grandfather, etc.). People can aso be related with friend and
acquaintance relationship predicates.

Besides all these, another special relationship predicate is frequently used in artificial intelligence. It's
called a_kind_of or is_a (we prefer the first name, because "is' is vague), and it can replace all type
predicates. Itsfirst argument is athing, and its second argument is the type of that thing (the predicate
name in the one-argument form considered before). For instance:

a_kind_of (enterprise, ship).
a_ki nd_of (tanker, ship).
a_ki nd_of (tuesday, day_of week).

which says that the Enterprise is akind of ship, atanker isakind of ship, and Tuesday isakind of day of
the week | REFERENCE 4|. .FS | REFERENCE 4| Some researchers don't agree with this use of

a _kind_of. They think that the first two facts should have different predicate names since the Enterprise
Isan individual while tankers are a group of individuals; often they'll use the predicate name element for
the "Enterprise” fact, and keep a_kind_of for the "tanker" fact. But a set whose sizeis1isstill a set, and
there doesn't seem to be anything fundamentally different between restricting the body type of a ship to
be atanker and restricting the name of a ship to be the word "Enterprise’--it just happens that people try,
not always successfully, to make names unique. Researchers who argue against this may be getting this
issue confused with the important "extensions vs. intensions” problem which wel'll discussin Section
12.8. .FE Some reasoning is easier with this two-argument form than the equivalent one-argument form.

There are other predicates, but as any psychotherapist will tell you, relationships are the key to a happy
life.

Semantic networks

Pictures can make a complicated set of factsalot clearer. There'sa simple pictorial way to show the
predicate expressions we've been discussing: the semantic network. Unfortunately, thereisamajor
restriction: semantic networks can only directly represent predicates of two arguments (so type predicates
must be in the two-argument form) | REFERENCE 5|. .FS | REFERENCE 5| But we can represent
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predicate expressions with more than two arguments indirectly, as sets of two-argument predicate
expressions. .FE

A semantic network is what computer scientists call aalabeled directed graph (see Appendix C for a
definition). We make every possible fact argument a small named circle (node) in the graph. For each
two-argument fact, we draw an arrow (edge) from the circle for its first argument to the circle for its
second argument, and label the arrow with the predicate name. So the fact p(a,b) is represented as an
arrow from acircle labeled "a' to acircle labeled "b", with the arrow itself labeled "p". If for instance our
factsare:

a_kind_of (enterprise, ship).

a_ki nd_of (kennedy, shi p).

part_of (enterprise,u_s_navy).

part _of (kennedy, u_s_navy).

part of (u_s navy, u_s governnent).

a_kind of (u_s_governnent, governnent).

col or (ship, gray).

| ocation(enterprise, 15n35e).
has(u_s_governnent, civil _service_system.

then our semantic network looks like Figure 2-3.

Getting facts from English descriptions

Usually programmers building artificial intelligence programs don't make up facts themselves. Instead,
they look up facts in documents and books, or ask people knowledgeable about the subject ("experts') to
tell them what they need--the process of knowledge acquisition. But English and other "natural
languages" are less precise than computer languages (though more flexible), and the programmer must be
careful to get the meanings right.

The sorts of facts we've considered so far are usually often signalled by the verb "to be" in English (is,
“are”, "was", "were", "will be", "being", and so on). For instance:
The Enterpriseis a ship.
A shipisavehicle.
The Enterpriseis part of the U.S. Navy.
A shipisgray.

Here "to be" is used for type predicates (the first and second sentences), apart_of relationship predicate
(the third sentence), and a property predicate (the fourth sentence). Plurals can also be used:

Ships are gray.
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Ships are vehicles.
English verbs with narrower meanings can be used too:

The Enterprise belongsto the U.S. Navy.
The Enterprise has a hull.

They color shipsgray.

The Enterpriseis located at 15N35E.

Thefirst two suggest part_of relationship predicates, and the last two are property predicates.

Predicates with three or more arguments

Y ou can have as many arguments to a predicate as you want if you're not concerned about easily
representing them in a semantic network. One ideais to include multiple property valuesin asingle fact,
much like adjectives and adverbs modifying a noun or verb. So for instance we could put everything we
know about a ship together:

ship_info(enterprise, 15n35e, 1200, 16f eb85, gray, | _kirk).

which we could read as "The Enterprise is a ship that was at 15N25E at 12 noon on February 16, 1985,
and itscolor isgray, and its captain is J. Kirk." To interpret such facts we need to keep a description
somewhere of the properties and their order within the arguments.

These sort of predicates define arelational database of facts. Much research has studied efficient
implementation and manipulation of such databases. The information about properties and their order for
each such predicate is called a database schema.

Another important category of predicates with often many arguments (though they can also have just
two) isthat representing results of actions--in mathematical terminology, functions. Suppose we want to
teach a computer about arithmetic. We could use a predicate sum of three numerical arguments, which
says that the sum of the first two argumentsis the third. We could give asfacts:

sum( 1,1, 2).
sunm(1, 3,4).
sum(1,4,5).
sunm(1, 5, 6).
sum( 2, 1, 3).
sum( 2, 2, 4).
sum 2, 3,5).
sum 2, 4, 6).
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And we could do thisfor lots of different numbers, and different arithmetic operations. Of course for this
to be useful in general, we would need very many facts and this would be unwieldy (we will describe a
better way in Chapter 5), but it will suffice to define operations on any finite set of numbers.

We will use function predicates frequently. To avoid confusion, we follow the convention that the last
argument always represents the result of (value returned by) the function, with the exception noted in the
next section | REFERENCE 6|. .FS| REFERENCE 6| If you're familiar with Lisp, be careful to include
the function result as an argument to Prolog predicates. In Lisp, avalue is always associated with the
whol e expression, something you can't do in Prolog. .FE

Functions can also be nonnumeric. An exampleis afunction that gives, for two employees of a company,
the name of the lowest-ranking boss over both of them. Since artificial intelligence emphasizes
nonnumeric reasoning, you'll see more nonnumeric than numeric functions in this book.

Probabilities

We have assumed so far that facts are always completely certain. In many situations (as when facts are
based on reports by people), facts are only probably true. Then we will use the mathematical idea of
probability, the expected fraction of the time something is true. We will put an approximate probability
as an optional last argument to a predicate, after the previoudy discussed function result if any. So for
instance

color(enterprise, gray,0.8).

says that we're 80 percent sure (or sure with probability 0.8) that the Enterpriseis gray. We'll ignore this
topic until Chapter 8.

How many facts do we need?

Aninfinity of facts are true about the world. How then do we decide which to tell acomputer? This
guestion has no easy answers. Generally, you must decide what you want the computer to do. Then make
sure to tell the computer in advance every fact that might be relevant to that behavior. "Libraries' of
useful facts for particular subjects will help. But the smarter you want the computer to be, the more facts
you must tell it. The next chapter will discuss the next question, how to get the computer to do things
with facts.

Keywords:

know edge
facts
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Exercises

(Note: answers to exercises marked with the code " A" are given at the back of the book.)

2-1. (A,E) Which of the following facts is better knowledge representation? Explain. (" Better" means
less likely to confuse people.)

color(enterprise, gray).
si ze(enterprise, big).

2-2. (R,A,E) Suppose you want to store facts about when and where memos were sent in an
organization. Which isthe best Prolog format for such facts, and why?

() <date>(<name>,<author>,<distribution>).
(ii) memo(<name>,<date>,<author>,<distribution>).
(iii) fact(memo,<name>,<date>,<author >,<distribution>).

2-3. Draw a semantic network representing the following facts:
Shipsarethings.

Carriersareships.
Ships have a position.
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Shipshaveacrew.
Carriershave planes.
Planes are things.

A crew consists of people.
People are things.

2-4. Represent the nonnumeric meaning of the picturein Figure 2-4 as a set of nonnumeric Prolog
facts. (Hint: describethecirclesand their relationships.)

2-5. (A) One-argument and two-argument predicates are very common in Prolog knowledge
representation. Most of the facts you want to put into computers can be represented with them.
Someone might say that this shouldn't be surprising, because most operationsin mathematicsare
either unary (applied to a singlething like the squareroot operation or the sine operation), or
binary (applied to two things, like addition and exponentiation). What's wrong with this comment?

2-6. (R,A) Consider the six-argument ship_info factsin Section 2.9. Torepresent them in a
semantic network, we need to convert each to a set of two-argument facts. Explain how. Assume
that six-argument factsonly record the most recent position of a ship.

2-7. (A,E) Why might it be a good idea to put falsehoods (statementsfalsein theworld) into a
computer?

2-8. Suppose you want to write a program that reasons like Sherlock Holmes did, about the facts of
some crimeto decide who isresponsible. You want to represent in Prolog style the facts you find
about the crime, and the reports of witnesses. The argument types used for factswill vary. But
certain arguments must beincluded in every fact about the crime--what arethey? And certain
arguments must beincluded in every fact giving areport from a witness--what arethey?

2-9. (E) Why must the representation of these two facts be fundamentally different?

Clint ismayor.
Someone is mayor .

2-10. (E) Consider the use of theword " boss" in the following facts. Suppose you wanted to
represent these factsin Prolog. Would it be a good idea for any two of these to use the same word
"boss' aseither apredicate nameor an argument name?

Mary isboss of Dick.

Dick and Mary bosstheir children around.
" Boss' hasfour letters.

A boss has managerial responsibilities.
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2-11. (E) Another way to put factsinside computersiswith arestricted subset of English. For
instance:

The Enterpriseisa ship.

The Enterpriseispart of the US Navy.
The color of the Enterpriseisgray.
The Enterpriseisat 15N25A.

(a) Discussthe advantages of storing factsthisway instead of with predicate expressions as we have
donein the chapter.

(b) Give a disadvantage for efficient use of the facts.
(c) Give a disadvantage for programming errors.

Go to book index
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Variables and queries

We can put facts into a computer. So what can we do with them? Well, we want to reason about facts
and conclude new facts--what's called inference. For this we'll need the concepts of queries, variables,
and backtracking.

Querying the facts

One thing we can do with facts in a computer isto look them up. Thisisthe usual mode of Prolog
interpreters, software that interprets and executes code written in the Prolog language | REFERENCE 1]
they wait for us to give them things they can try to look up. .FS | REFERENCE 1| Most Prolog-
understanding software are interpreters like this and not compilers. A Prolog interpreter is not an
"artificial intelligence program” but atool to execute artificial-intelligence programs written in the Prolog
language. .FE Y ou're in this query mode when the Prolog interpreter types ?- at the front of every line.
Query mode is the way database query languages work, like SQL and QUEL.

To make this clearer, assume these facts (the semantic network example from Section 2.7) have been
entered into a computer running a Prolog interpreter:

a_kind_of (enterprise, ship).

a_ki nd_of (kennedy, shi p) .

part_of (enterprise,u_s_navy).

part _of (kennedy, u_s_navy).

part_of (u_s_navy, u_s_governnent).
a_kind_of (u_s_governnent, governnent) .

col or (shi p, gray).

| ocati on(enterprise, 15n35e).
has(u_s_governnent, civil _service_system.

We call such a set of facts known to a Prolog interpreter a Prolog database or just database. As welll
explain shortly, databases can be loaded from files. The block diagram in Figure 3-1 summarizes these
basics.

Now in query mode we can type
part of (kennedy, u_s _navy).

so that what actually shows on the computer terminal will be
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?- part_of (kennedy, u_s _navy).

Note the period; the interpreter will wait (forever if necessary) until we typeit. Then the interpreter will
type in reply the single word yes to acknowledge that the fact isin its database. If we ask instead

?- part_of (pequod, u_s navy).

(again the ?- istyped by the interpreter and not us), the computer will type the single word no. So yes
means"| found it" and no means "l couldn't find it". We call ayes a query success and no aquery
failure. So to make the computer say no when a query is false, the database must include every truth
about its subject, for otherwise no could mean incompl ete data.

Queries with one variable

But thisisn't too interesting. A query must give the precise fact we want to look up, including every
argument. We might instead want to ask if apart_of fact has enterprise asitsfirst argument and
anything at all asits second argument. We can do this by querying

?- part_of(enterprise, X).

Read thisas "Find me an "X" such that part_of(enterprise X) istrue," or smply as"What is the
Enterprise part of 7' The Prolog interpreter will go through its factsin order, trying to match each to the
guery. When it finds one that matches in predicate name and first argument, it will type "X=" followed
by the fact's second argument, instead of typing yes. Or in technical jargon, it binds or matches X to a
value and printsit. So for this query with the previous database, we will get

X=u_s_navy
or X isbound to u_s navy.

X hereisavariable. Prolog variables have similarities to variables in other programming languages, but
also important differences we'll encounter as we proceed. Prolog variables are designated by a capitalized
first letter in aword (followed by other letters and numbers, either capitalized or uncapitalized), and this
iIswhy in the last chapter we used lower case for other words in Prolog.

Variables can only be arguments in Prolog; they can't appear as predicate names (though welll give away
around this limitation in Chapter 12). This means Prolog represents only first-order logic. First-order
logic is sufficient for nearly all artificial-intelligence applications, so that's no big deal. First-order logic
Isareason we insisted in Chapter 2 on predicate names more general than their argument names:
variables pay off when they stand for lots of possibilities.
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Multi-directional queries

A variable can appear anywhere among the arguments to a predicate expression in a query, with some
exceptions to be discussed later. So we could also query with the previous database

?- part_of (X u_s_navy).
and the Prolog interpreter will type back
X=enterprise

In other words, we can be flexible about which arguments are inputs (constants) and which are outputs
(variables) in aquery. This means Prolog can answer quite different questions depending on where we
put variablesin the query. Thisflexibility extendsto calls of Prolog procedures (subroutines and
functions) too, as you will seein Chapter 4, a big difference from most programming languages.

Matching alternatives

More than one thing (value) can match (bind) a query variable. The Prolog interpreter will find the first,
print it out, and stop and wait If just one is sufficient, type a carriage return. But to see the next answer (if
any), type asemicolon (";"). We can keep typing semicolons, and it will keep finding new matches, until
it can't find any more and it must answer no. So for our example database if we query

?- a_kind_of (X, ship).

which means "Find me an X that's akind of ship," the interpreter will first type

X=enterprise

and then if we type a semicolon it will type

X=kennedy

and then if we type a semicolon it will type no. The semicolon prints at the end of the line, so what this
will al look like on the computer terminal will be:

?- a_kind_of (X, ship).
X=ent er pri se;
X=kennedy;

no
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where we typed the two semicolons and the first line except for the "?- , and the interpreter typed the
rest.

We can have more than one variable in aquery. If we were to query for our example database
?- part_of (X Y).

("What things are part of other things?') and we kept typing semicolons, we would eventually see on the
computer terminal some like this (some Prolog dialects format this output slightly differently):

X=enterprise, Y=u_S nhavy;
X=kennedy, Y=u_s navy;
X=u_s_navy, Y=u_s_governnent,;
no

So semicolons find us every combination of bindings of the variables that satisfies a query. Since the
Prolog interpreter works top to bottom through the database, the bindings will reflect database order.

Multi-condition queries

A Prolog interpreter also lets us specify that several different conditions must succeed together in a
query. This lets us specify "chains of reasoning"”, like those so important to detectives in mystery fiction.

Suppose we wanted to know the gray-color of the Enterprise. If wetype
?- color(enterprise, Q).

we get no with our example database, because the color fact is about shipsin general and not the
Enterprise. This problem of information in the "wrong place" happens often in artificial-intelligence
systems. Instead we can ask if there is some category or type T that the Enterprise belongs to, such that
everything of type T has color C:

?- a _kind_ of(enterprise, T), color(T,QC).

This represents an "and" (conjunction) of two predicate expressions, both of which must succeed for the
whole match to succeed. It works this way: wefirst try to answer the query

?- a_kind of(enterprise,T).

Then for that particular T, we answer the query
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?- color(T,C).

Using our example database, we first match T to ship in the first-listed fact. We then look for a color fact
inwhich this T isthe first argument, and the seventh-listed fact qualifies, we can then match C to gray.
The Prolog interpreter now types out:

T=shi p, C=gray

So commas between predicate expressions in a query line mean reusing the same values for any same-
named variables. Commas are like alogical "and" since all the subqueries (predicate expressions) must
succeed for the whole query to succeed. To make commas easier to spot, we'll often put spaces after them
In queries; these spaces are ignored by the interpreter. (But don't put spaces in predicate expressions.)

As another example, suppose we want to know what the Enterpriseis part of. We could say
?- part_of(enterprise, X).

and get X=u_s navy, but that's not the only reasonable answer since the U.S. Navy is part of something
else. So we could say:

?- part_of(enterprise, X), part_of (X Y).

and get back X=u_s navy, Y=u_s government.

Logical "or" (digunction) is represented by a semicolon instead of a comma. For instance
?- color(enterprise,C); color(ship,C.

asks for the color of the Enterprise if any is recorded, otherwise the color of shipsin general. Parentheses
can group which predicate expressions go with which othersin "and"sand "or"s. So for instance the two
conditions under which something is part of something else could be compressed into one with:

?- part_of(enterprise, X); (part_of(enterprise,Y), part_of (Y, X)).

Thisreads: "Find me an X such that either the Enterpriseis part of it, or the Enterprise is part of some 'Y
that is part of it." We won't use these "or" semicolons much, because (1) "and"s occur more often in
applications, (2) they often require parentheses and so are hard to read, and (3) there is a better way to get
the effect of an "or", to be discussed in the next chapter.

Figure 3-2 should help you keep straight the special symbols we've used so far, plus previewing afew to
come.
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Negative predicate expressions

So we have "and"s and "or"s. All we need to complete a Boolean algebrais a negation or "not". Thisis
accomplished by the built-in predicate not whose one argument is a predicate expression. (A built-in
predicate is one with special meaning to the interpreter, a meaning not given by facts.) A not succeeds
whenever querying its argument fails, afails whenever querying its argument succeeds. So the query

?- not(color(enterprise,green)).

will succeed whenever there's no fact that the color of the Enterprise is green, and fail when thereis such
afact. We'll extend the term "predicate expression™ to include such not expressions too.

How will the Prolog interpreter ever be sure something is not true? Strictly speaking, it can't, since facts
that directly say something isfalse are not permitted in Prolog (Chapter 14 discusses this further). So not
Is defined to mean the interpreter couldn't find afact in its database--negation-by-failure or the closed-
world assumption. Y et thisis a curious and awkward interpretation of "not", not what we usually mean
by the word in English. So we must be careful with not in Prolog. One big problem is that we can't, with
afew exceptions, put unbound variables within anot. So this query won't work:

?- not(color(X gray)), a_kind_of (X ship).
(Thisasksfor aship X that isn't gray.) Instead we must reverse the order of the two things:

?- a_kind _of (X, ship), not(color(X gray)).

Some query examples

Questions in English about a database often map directly into Prolog queries. Words like s, "are",
"does", and "did" at the beginning of a question suggest queries without variables (yes/no queries).

Words like "what", "which", "who", "where", "when", and "how" suggest variables.

Here are some examples. We assume the meanings of the part_of, color, a_kind_of, etc. predicates
we've been assuming all along. (These queries print out additional variable values than those desired,;
Chapter 4 will explain how to prevent this.)

1. What things are part of gray things?
?- part_of (X Y), color(Y,gray).

2. What things are part of parts of other things?
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?- part_of (A B), part _of (B, C).
3. What things are gray or blue?
?- color(T,gray); color(T,blue).
4. What isn't an example of agray thing? (Example suggests the reverse of thea kind_of relationship.)
?- a_kind_of (E, T), not(color(T,qgray)).
5. What is the Enterprise, either directly or through one level of indirection?
?- a_kind of (enterprise,J); (a_kind of(enterprise,K), a kind of(K,J)).

6. What things of which the Enterprise is part, are themselves part of something that has a civil service
system?

?- part_of(enterprise,U), part_of (U, V), has(V,civil_service_systen.
Loading a database

How do we |oad a database of factsinto a Prolog interpreter in the first place? This varies between
implementations of Prolog interpreters, but usually we must first enter the facts we want into atext file,
using an editor program. We exit the editor and start up the Prolog interpreter. We then query a specia
built-in loading predicate, called consult in this book. This consult is not something we must give facts
for, but an internal Prolog name like not; it takes one argument, the name of afile to load into the Prolog
interpreter's internal memory (database). From then on, the facts in that file will be used to answer
queries.

For instance, suppose we use the editor to create afile called "test”, containing:
boss(harry).

enpl oyee(ton).

enpl oyee(di ck).

We can start the Prolog interpreter, type the query

?- consult(test).

and then type the query
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?- enpl oyee( X).

and get

X=t om

from the first fact in the file that matches.

We can load more than one file into the Prolog interpreter, if several files contain useful facts. Just query
consult again. New facts are put after the old facts, so you can get answers in adifferent order if you
load the same filesin a different order.

Backtracking

Let's consider in more detail how the Prolog interpreter answers complicated queries. To make this
easier, consider for now queries with only commas ("and"s), no semicolons ("or"s) or nots,

Predicate expressions "and"ed in aquery are first taken left to right. That is, the leftmost expressionis
tried first, then the second expression from the left (using whatever variable matches were found for the
first) and so on. So predicate expressionsin aquery areinitially donein order, like lines of a program in
aconventional language like Pascal.

But suppose that a predicate expression fails--that is, no fact matching it can be found. If the expression
has variables that were bound earlier in the query line, the fault may just be in the bindings. So the
interpreter automatically backtracks (goes back to the immediately previous expression in the query) and
triesto find a different fact match. If it cannot, then that predicate expression fails and the interpreter
backtracks to the previous one, and so on.

Anytime the Prolog interpreter cannot find another matching for the leftmost expression in a query, then
there's no way the query could be satisfied; it types out the word no and stops. Anytime on backtracking
it can find a new matching for some predicate expression, it resumes moving right from there asit did
originaly.

The purpose of backtracking isto give "second chances' to aquery, by revising earlier decisions.
Backtracking is very important in artificial intelligence, because many artificial-intelligence methods use
intelligent guessing and following of hunches. Guesses may be wrong, and backtracking is a good way to
recover then.

Here's an example:
?- part_of (X, Y), has(Y,civil _service_systen).
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which asks for an X that is part of someY that has a civil service system. Assume the standard database
example of this chapter. Then the only facts that will help with this query (the only facts with predicate
names part_of and has) are:

part_of (enterprise,u_s_navy).

part _of (kennedy, u_s_navy).

part_of (u_s_navy, u_s_governnent).
has(u_s_governnent, civil _service_system.

Herein detail iswhat the Prolog interpreter does to answer this query:

1. It takes the first predicate expression in the query, and matches X to enterprise, and Y
to u_s navy. It stores the information that it has chosen the first fact to match the first
expression.

2. It then moves to the second predicate expression, and tries to answer the subquery
?- has(u_s_navy, civil _service_system.

That is, it "substitutes” in the value bound to variable Y. But the subquery fails since
there's no such fact.

3. So it must backtrack, or return to the first predicate expression in the query. From its
stored information, it knows it chose thefirst part_of fact last time, so now it triesthe
second, binding X to kennedy and Y to u_s navy. It stores the information about what it
chose.

4. 1t then tries to answer the subguery
?- has(u_s _navy, civil _service_system.

Thisisthe same query it did in step 2, but the interpreter is stupid and doesn't remember
(Chapter 6 will explain how to force it to remember), so it checks the facts and fails to find
anything again. The subquery fails.

5. So it backtracks again, to the first predicate expression in the query. It chose the second

fact last time, so it now chooses the third (and last) part_of fact. So X is bound to
u_s navy and Y isbound tou_s government.

6. The second expression is considered with the new binding for Y, and the interpreter tries
to answer the subquery
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?- has(u_s_governnent,civil _service_systen).
And this succeeds because it's the fourth fact.

7. S0 both predicate expressions in the query succeed, and the whole query succeeds. The
interpreter prints out the bindings that it found:

X=u_s _navy, Y=u_s_gover nnment

Notice that the interpreter wouldn't have had to backtrack if we just reversed the order of the query
("and" is commutative--see Appendix A):

?- has(Y,civil _service systenm), part_of (X Y).

because only one fact can match the has predicate expression. But that requires analyzing the factsin
advance, and probably won't be true for a complete database for an application.

The automatic backtracking of the Prolog interpreter has both advantages and disadvantages. A big
advantage is that combinatorial problems are easier to specify than with most computer languages,
because the interpreter does more work for you. It also means that Prolog is a more flexible language
than most: if you refer to an unbound variable in Pascal, Ada, PL/I, or Fortran, you get an error message
and the program stops. The disadvantages are that Prolog programs run slower than those of other
languages, and they're sometimes harder to understand and debug, because the language tries to do more.

A harder backtracking example: superbosses

Hereis another backtracking example. It's trickier than the last because two predicate expressions both
have alternatives. Furthermore, the same predicate name is used twice, and we have to distinguish the
alternatives for each use.

Suppose we have facts about employees in an organization, represented with a two-argument predicate
boss. Itsfirst argument a boss, and its second argument is an employee of that boss. Take the following
exampl e database:

boss(di ck, harry).
boss(tom di ck) .
boss(ann, mary).
boss(mary, harry).

Suppose we want find "superbosses’, people who are bosses of bosses. That is, those X that are a boss of
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some Y while a the sametimeY isaboss of some Z. We can issue the query
?- boss(X Y), boss(Y, 2).

and every match the interpreter finds for variable X will be a superboss. (Matchesfor Y and Z will also
be found, but X isall that we want, according to the way we stated the problem.)

Let's trace query execution (summarized in Figure 3-3). As usual, assume facts are placed in the Prolog
database in the order listed.

1. Thefirst predicate expression in the query will match the first fact in the database, with
X=dick and Y=harry.

2. Moving to the second predicate expression in the query, the interpreter searchesfor a
bossfact with harry asitsfirst argument. But there's no such fact in the database, so the
second expression in the query fails.

3. So the interpreter backtracks, returning to the first expression to make another choice.
Last timeit used the first fact in the database, so thistime it uses the second fact and sets
X=tom and Y =dick.

4. Things proceed just asif these matchings happened originally. The interpreter goesto
the second predicate expression, and searches for a boss fact where dick isthe first
argument. And yes, thereis such afact, the first fact in the database.

5. So Z=harry, and since we're at the end of the query, the query succeeds. Therefore Tom
isasuperboss. The interpreter types out X=tom, Y=dick, Z=harry.

Now we can explain better what typing a semicolon does after the Prolog interpreter types out a query
answer (not to be confused with a semicolon in aquery: it forces failure and backtracking. For instance,
suppose after that answer X=tom we type a semicolon instead of a carriage return. What happens now is
summarized in Figure 3-4, together with the previous events.

6. Theinterpreter will go back to what it just finished, the second expression of the query,
and try to find a different match.

7. The old match for the second query expression was from the first fact, so now it
examines the second, third, and fourth factsin order. Unfortunately, none have dick as
their first argument, so the expression fails.

8. So the interpreter must return to the first predicate expression yet again. The first and
second facts have been tried, so it uses the third fact and sets X=ann and Y=mary.
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9. It resumes normal |eft-to-right processing and tries to find a match for the second query
expression, starting at the top of the list of facts. (Each time it approaches a query predicate
expression from the left, it starts at the top of the facts.) This means finding a fact where
mary isthe first argument, and indeed the fourth fact qualifies.

10. So Z=harry, and the entire query succeeds when X=ann, meaning that Annisa
superboss. The interpreter types out X=ann, Y=mary, Z=harry.

Backtracking with "not"s

Negated predicate expressions (expressions with anot) are easy with backtracking. Since they can't bind
variables to succeed, they can be skipped in backtracking. For instance, we could add another expression
to our superboss query to insist that the superboss not be the boss of Dick:

?- boss(X Y), not(boss(X dick)), boss(Y,2).
Then when the interpreter executes the new query (see Figure 3-5):

1. Thefirst predicate expression matches the first fact in the database as before, setting
X=dick and Y=harry.

2. Thisbinding of X satisfies the second condition, the not (Dick isn't his own boss).

3. For the third expression, there's no fact with harry asitsfirst argument, so it fails. The
interpreter backtracks to the immediately previous (second) expression.

4. But the second expression isanot, and nots aways fail on backtracking, so the
interpreter returns to the first expression and matches X=tom and Y =dick.

5. But this X now makes the second expression fail--there is a fact that Tom is the boss of
Dick.

6. The interpreter returnsto the first predicate expression and takes the next matching from
the database, X=ann and Y=mary.

7. This X succeeds with the second expression since Ann isn't the boss of Dick.
8. The Y match succeeds with the third expression if Z=harry. So the interpreter reports

that X=ann, Y=mary, Z=harry.
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Notice the backtracking works differently if we rearrange the query into this equivalent form:
?- boss(X Y), boss(Y,Z), not(boss(X dick)).

Thisis processed very much like the original two-expression superboss query, except that the not
expression forces failure instead of success for X=tom; we got the same effect by typing a semicolon
after the first answer to the query in the last section. But the query won't work right if we reorder it as

?- not (boss( X, dick)), boss(X, Y), boss(Y,2Z2).

because now anot with an unbound variable isfirst, violating the guideline of Section 3.6.

The generate-and-test scheme

When avariable occurs more than once in a Prolog query, the Prolog interpreter chooses avalue
(binding) at the first occurrence, and then usesit in all other occurrences. So processing of the predicate
expression containing the first occurrence "generates' avalue, which is"tested" by the predicate
expressions containing later occurrences. Thisideais often used in artificial intelligence, and it's called
the generate-and-test scheme or paradigm. Often the generating predicate expressions define the types of
the variables, so their predicates are type predicates (Section 2.2).

Generate-and-test is a good way to attack problems for which we don't know any particularly good way
to proceed. We generate potential solutions, and apply a series of teststo check for atrue solution. This
works well when it's hard to reason backward about a problem (from a statement of the problem to a
solution), but it's easy to reason forward from a guess to a solution (or verify a proposed solution). An
example is cryptography (decoding ciphers): an approach is to guess possible coding (encryption)
methods, and see if any of them gives coded text resembling a coded message. Many other interesting
problems work well for generate-and-test. But problems with well-defined solution methods, like many
mathematical problems, aren't suitable for it.

Backtracking with "or"s (*)

Semicolonsin queries ("or"s) aretricky for backtracking. We'll mostly ignore them in this book because,
aswe say, there's a better way to get their effect; but for the record, here's what happens. When a
predicate expression before a semicolon succeeds, all the other expressions to the right that are "or"ed
with it can be skipped. When such an expression fails, the next term to the right should betried. If there
aren't any more, the whole "or" should fail, which usually means backtracking to the left. So while
backtracking with "and"s always goes | eft, backtracking with "or"s sometimes goes | eft and sometimes
goesright.

Implementation of backtracking

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap3.html (13 of 22) [23/04/2002 17:38:38]



http://www.cs.nps.navy.mil/peopl e/faculty/rowe/book/chap3.html

Implementing backtracking requires allocation of a pointer (Appendix C defines pointers) for every
predicate expression in a query, a pointer to where in the database the interpreter last found a match for a
predicate expression. So Prolog is more complicated to implement than conventional higher-level
languages like Pascal that only need extra storage in the form of a stack for procedure calls (Appendix C
defines stacks too). Prolog needs a stack for this purpose too, as you'll seein Chapter 4.

Queries don't necessarily require inspection of facts in the database in sequence (sequential search). All
Prolog interpreters index facts in some way, usually at least by predicate name. This means keeping lists
of facts with the same predicate name, together with their addresses. So when the interpreter sees an

a _kind_of predicate in aquery, it need only search through the a_kind_of facts pointed to in the

a _kind_of index list for amatch. Figure 3-6 gives an example of a database and itsindex. More selective
indexing (not standard in most Prolog dialects, though) can examine the arguments too.

Indexing by predicate name means that Prolog facts can go in many different orders and still provide
exactly the same behavior. For instance, the factsin Figure 3-6

a_kind_of (enterprise, ship).

a_ki nd_of (kennedy, shi p) .

part_of (enterprise,u_s_navy).
part _of (kennedy, u_s_navy).
part_of (u_s_navy, u_s_governnent).

can be rearranged as

part _of (enterprise,u_s _navy).
a_kind_of (enterprise, ship).

part _of (kennedy, u_s_navy).

a_ki nd_of (kennedy, shi p).

part _of (u_s_navy, u_s_governnent).

and all queries will give the same answers in the same order, as they will for

part_of (enterprise,u_s_navy).
part _of (kennedy, u_s_navy).

part _of (u_s navy, u_s governnent).
a_kind_of (enterprise, ship).

a_ki nd_of (kennedy, shi p).

But thisis only because the three part_of facts maintain their order and the two a_kind_of facts
maintain their order. The following database will give answersin a different order than the preceding,
though it gives the same answers:
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a_ki nd_of (kennedy, shi p).

part _of (u_s_navy, u_s_governnent).
part _of (enterprise,u_s _navy).
a_kind _of (enterprise, ship).

part _of (kennedy, u_s _navy).

The speed of query answering depends on how many facts are indexed for each predicate in a query; the
more facts, the slower the queries. Queries will also be slower when variables appear multiple timesin
the query and there is no argument indexing. This situation, called ajoin in database systems, requires
embedded iterative loops, and loops can take a lot of time. With joins, possibilitiesliterally multiply. For
our previous example

?- a_kind of (enterprise, X), color(X C).

if there are 100 a_kind_of facts and 50 color facts, 50,000 combinations must betried to find all possible
X and C pairs, as when we type a semicolon repeatedly or when there are no such X and C.

About long examples

We've studied several long examplesin this chapter. Are al the examples of artificial intelligence like
this? Yes, unfortunately. Artificial intelligence is a set of techniques for managing complexity, and you
can only seeits advantagesin at least moderately complex problems.

This disturbs some students. They feel that since they can't get al of along example into their heads at
once, they can't really understand what's going on. One reply is to think of programming languages.
There'salot of activity behind the scenes that the programmer isn't usually aware of--parsing, storage
management, symbol tables, stacks, type checking, register allocation, and optimization. But you don't
need to know this to program. The complexity of artificial-intelligence examples comes from the need to
explain, at least initialy, similar behind-the-scenes details. Once you understand what details are
necessary, you can ignore them as you program.

Most artificial-intelligence programs and systems do provide additional help for understanding complex
program activities in the form of explanation facilities that summarize and answer questions about
reasoning activity. These facilities provide program tracing, and answer questions like "Why did you
conclude boss(tom,dick)?' and "Why didn't you conclude boss(dick,tom)?'. More on thisin Section
15.8.

Keywords:

I nf erence
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Exercises

3-1. (A) Good programming style in Prolog doesn't allow the argument to a not to be more than one
predicate expression, and doesn't allow composite queries (queries not just a single predicate
expression) " or" d together.

() Using good programming style, write a Prolog query that istrueif the " nor" of predicate
expressionssa and b (both of no arguments) istrue. (" Nor" meansthe opposite of an " or").

(b) Using good programming style, write a Prolog query that istrueif the" exclusiveor" of
predicate expressionsa and b istrue. (" Exclusive or" meanseither istrue but not both).

3-2. (R,A) Suppose you have the following Prolog database:

I ncunbent (cspr of essor, davi s).
| ncunbent (csprof essor, rowe).
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| ncunbent (cspr of essor, wu) .

| ncunbent (csprof essor, zyda).

| ncunbent (cschai rman, | um .

| ncunbent (dean_i ps, marshal |).

| ncunbent ( provost, shrady).

| ncunbent (superi nt endent, shumaker) .
| ncunbent (di rector_m | ops, bl ey).
bossed by(csprof essor, cschairmn).
bossed_by(cschai rman, dean_i ps).
bossed_by(orchai rman, dean_i ps).
bossed by(dean_i ps, provost).

bossed by(provost, superi ntendent).
bossed by(director_m |l ops, superintendent).

(&) Theincumbent predicate meansthat the person that isits second argument hasthejob
description that isitsfirst argument; the bossed by predicate meansthat the boss of the first
argument isthe second argument. Paraphrase each of the following Prolog queriesin English.

?- bossed_by(csprofessor, X), bossed by(X Y).

?- bossed_by(X, Y), incunbent(X rowe), incunbent(Y,Z2).

?- 1 ncunbent (dean_i p, X); incunbent (dean_i ps, X).

?- i ncunbent(J,P), (bossed by(J, provost); bossed by(J,dean_ips)).
?- bossed_by(P, superintendent), not(incunbent (P, shrady)).

(b) Without using a computer, what will be thefirst answer found by a Prolog inter preter with the
preceding database and with each query given?

3-3. Suppose two queries each represent an " and" of anumber of predicate expressions. Suppose
the expressions of query 1 are a subset of the expressionsin query 2. How do the answersto query
1relateto the answersto query 2?

3-4. Thewords"the" and "a" mean different thingsin English. What important feature of Prolog
querying doesthe differ ence between them demonstrate in the following sentences?

Find a memo we sent headquarterslast week. The memo reported on a board
meeting last October 10. The board meeting was noisy, and thisis mentioned in the
memao.

3-5. (A) Supposein your Prolog database you have N one-argument facts for the predicate name p
and M one-argument factsfor the predicate nameq.

(&) What isthe maximum number of answers, not counting no, that you will get to the query
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?- p(X), a(y).

(b) How many total timeswill the Prolog inter preter backtrack from g to p for the situation in part
(a), beforeit types no?

(c) What isthe minimum number of answerstothequery in part (a)?

(d) What isthe maximum number of answers, not counting no, you will get to the query

?- p(X), a(X).

(e) How many total timeswill the Prolog inter preter backtrack from g to p for the situation in part
(d), beforeit typesno?

(f) What isthe minimum number of answersto thequery in part (d)?
3-6. (R,A) Suppose we keep in a Prolog database infor mation about grades on two testsin a cour se.

() Supposewe ask if Joegot an A on test 1 and the Prolog inter preter saysyes. Suppose we then
ask if Joegot an A on test 2 and it saysyes. It seemsfair to summarize this by saying Joegot A'son
both tests 1 and 2. Now suppose we ask if someone got an A on test 1 and theinter preter saysyes.
Weask if someonegot an A on test 2 and it saysyes. It isunfair now to conclude that someone got
an A on both test 1 and test 2. How isthis situation different? How does thisillustrate an important
feature of Prolog querying?

(b) Suppose the database consists of facts of the form:
gr ade( <per son>, <t est - nunber >, <gr ade>) .

Writea query that establishesif everyonein the classgot an A on test 1, without usingan " or"
(semicolon). (Hint: Usethe exact opposite.)

(c) Supposeyou ask if everyonein the classgot an A on test 1 and the Prolog inter preter saysyes.
Suppose you then ask if everyonein the classgot an A on test 2 and it saysyes. Can you conclude
that everyonein the classgot both an A on test 1 and an A on test 2? Why? Assumethisisareal
classat areal college or university.

3-7. Here'sa summary of the current situation on thefictitioustelevision soap opera Edge of
Boredom:

Jason and Phoebe are married, but Phoebe isin love with Perry. Perry doesn't love her
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because heis still married to Stacey, but Zack is romantically inclined toward Phoebe. He's
in competition with Lane, who also loves Phoebe despite being married to Eulalie, whom
Jason is feeling romantic about.

(2) Represent the basic meaning of these statements by facts using only two different predicate names.
Noticethat if X ismarriedto Y, Y ismarried to X.

(b) A marriageis on the rocksif both its participants are in love with other people and not with each
other. Which people are in marriages that are on the rocks? Show the necessary Prolog query and its
result.

(c) A person isjealous when a person they love isloved by athird person, or a person isjealous when
married to someone loved by athird person. Which people are jealous? Show the necessary Prolog query
and itsresullt.

3-8.(a) Consider the query

?2- a(XyY), b(XY).
with the database

a(1,1).
a(2,1).
a(3,2).
a(4,4).
b(1,2).
b(1,3).
b(2,3).
b(3,2).
b(4,4).

Without using a computer, what are all the answers that you will get to the query, in order (as you keep
typing semicolons)?

(b) Without using a computer, what does this query print out (as you keep typing semicolons)?

?2- a(XyY), b(XY), a(Y,Y).

3-9. (A) Consider this Prolog query:

?2- 1r(XY), s(Y,2), not(r(Y,X)), not(s(Y,Y)).
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with this database:

r(a, b).
r(a,c).
r(b,a).
r(a,d).
s(b,c).
s(b, d).
s(c,d).
s(c,c).
s(d, e).

(a) Without using a computer, what is the first answer found to the query? Hint: you don't have to do it
Prolog's way.

(b) Without using a computer, how many times does a Prolog interpreter backtrack from the third to the
second predicate expression to get thisfirst answer?

3-10. Consider this Prolog database:

u(a, b).

u(b, b).

u(c, d).

u(c, a).

u(d, a).

u(d, c).

Now consider this Prolog query, without actually using a computer:

?2- u(XY), u(Y,2), not(u(X 2)).

(&) How many times will aProlog interpreter backtrack to the first query predicate expression u(X,Y) to
find the first answer to this query?

(b) How many times will a Prolog interpreter backtrack to the second query predicate expression u(Y,Z)
to find the first answer to this query?

(c) How many times will aProlog interpreter backtrack to the third query predicate expression
not(u(X,2)) to find the first answer to this query?

(d) How many further times will a Prolog interpreter backtrack to the first query predicate expression
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u(X,Y) to find the second answer to this query?

(e) How many further times will aProlog interpreter backtrack to the second query predicate expression
u(Y,Z) to find the second answer to this query?

3-11. (H) Design agood set of predicates for the following data about an organization and its employees.
Assume you have to do thisin Prolog. Try to be efficient: avoid duplicate data, empty data, and too many
linking arguments, while keeping data access reasonably fast.

Assume we have an organization with departments, subdepartments, and projects. A subdepartment can
belong to only one department, but a project can belong to more than one subdepartment or department
(but most of the time only one). Employees belong to one subdepartment and one or more projects.
Employees have a name, social security number, date of birth, address, and alist of successfully
completed projects that they participated in since they joined the organization. Employees also are
characterized by Personnel by "job skills' they have from arough list (e.g. "can type", "has truck
license", "experience in writing"). Projects have a name, code, starting date, projected or actual
completion date, and the room number for the office of each employee on the project. Employees have
only one office, but there may be more than one employee in the same office.

Design these predicates to answer these questions easily:

--Give the name, department, and office number for each employee on project 93521.
--Give the name, department, and office number for each employee on projects started last
year.

--Give the people in department 43 who have typing skills.

3-12. Questions in English have subtleties that are sometimes hard to translate into Prolog queries. This
became obviousin building the first natural language front ends to databases, computer programs that
tried to answer, in English, questions about the database contents. Here are illustrations of two bugs
discovered in those early programs. Try to explain what a program like a Prolog interpreter is missing
when it makes such errors. (Brackets give our explanatory comments.)

@

Person: Can you tell me the commander of the Enterprise and his rank?
Computer: Yes. [That'sal it typesin response.]

(b)
Person: Who commands the Pequod?

Computer: Nobody. [That's strange, because every ship must have a commander.]
Person: Where is the Pequod currently?

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap3.html (21 of 22) [23/04/2002 17:38:38]



http://www.cs.nps.navy.mil/peopl e/faculty/rowe/book/chap3.html

Computer: Nowhere. [Strange ship this Pequod.]
Person: Does the Pequod exist?
Computer: No. [So that's the reason.]

Go to book index
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Definitions and inferences

Much human intelligence consists of conclusions or inferences drawn from facts, instead of facts
themselves. We'll now show how inference methods can be represented, including a famous one called
inheritance. That is, we'll formalize chains of reasoning.

Rules for definitions

If we ask alot of queries of a database, especially queries about related things, we may be typing the
same expressions over and over again. Nearly all programming languages have subroutines or procedures
to modularize knowledge, group it into its natural pieces. Prolog has them too, and they're called rules or
definitions. Rules are away to create the ability to query new predicates without specifying new facts, by
defining the new predicate names in terms of old predicate names.

Prolog rules have a left side and aright side, and the symbol :- in between (it is supposed to look like a
backward arrow, but you need a good imagination). Read the symbol as"if". To itsleft sdeisasingle
predicate expression, usually with variables as arguments. To itsright side is a query, with possibly
multiple predicate expressions combined with the comma ("and"), semicolon ("or") and not symbols. For
Instance:

gray_enterprise :- part_of(enterprise, X), color(X gray).
This says that predicate expression gray_enter prise succeedsif the query
?- part_of(enterprise, X), color(X gray).

succeeds. In other words, gray_enterpriseistrueif the Enterpriseis part of something that isgray in
color. So gray_enterpriseisacode representing a query.

More formally, the gray_enter prise rule defines a new predicate of no arguments called
gray_enterprise. When queried:

?- gray_enterprise.

the interpreter succeeds (answers yes) if it can succeed in querying the right side of the gray _enterprise
rule. Otherwise the interpreter fails (answers no). It'slike the right side of the rule is substituted for the
left side whenever it occursin aquery. The variable X isalocal variablein the rule, avariable whose
value will be "thrown away" when the rule is done, and will not be printed out in any query answer. Any
Prolog variable that appears only on the right side of aruleis called local to that rule.
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But gray_enterpriseisn't too useful because it only covers one color. What we really want is arule that
will tell uswhat color something is. We can do this with avariable on the left side of therule, avariable
representing the color:

color _enterprise(C :- part_of(enterprise, X), color(X C).

C isaparameter variable of therule, and avalue for it will be "returned" as aresult of executing the
rule. So if we query

?- color_enterprise(C.
when our database is that of Section 3.1 and the interpreter uses the color _enterpriserule, it will type
C=qgr ay

in reply. Rules can have any number of such parameter variables, as well as constants (ordinary words
and numbers), as arguments on their left sides. So if we wanted an even more general color rule, one that
would tell usthe color for many objects, we could say:

color _object(X, C :- part_of (X Y), color(Y,O.

Here X and C are parameter variables, and Y isalocal variable. So values for X and C only will be
returned.

Figure 4-1 summarizes our terminology about rules. Y ou can think of local variables as being
existentially quantified ("there exists some X such that something is true"), and parameter variables as
universally quantified ("for every X something istrue")--see Appendix A for more about quantification,
an important concept in logic. Actually, the distinction of "local” from "parameter” variablesis
misleading, because the opposite of "local" is"global", and there aren't any true "global" variablesin
Prolog. Rules just give a shorthand for queries, and avariable X is one query is always different from a
variable X in a separate query. The only way to get anything like aglobal variable in Prolog isto assert a
fact.

Here are more rule examples. This defines X to betheson of Y if X isthechild of Y and X ismale:
son(X,Y) :- child(X YY), male(X).
This defines X to be the "superboss® of Y if X isthe boss of the boss of Y

superboss(X,Y) :- boss(X 2Z2), boss(ZY).

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap4.html (2 of 29) [23/04/2002 17:38:42]



http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap4.html
This defines something X you own to be stolen if it isn't present and you haven't given it to someone:
stolen(X) :- owns(you, X), not(present(X)), not(given(you, X, Y)).

This defines the previous example predicate color _object in adifferent way, using a_kind_of instead of
part_of. It saysthat the color of X isCif X isatypeof Y and the color of Y isC.

color _object(X, O :- a kind of (X Y), color(Y,QO.

Usually predicates defined by rules can be used in queries just like fact predicates. This means that we
can usualy make variables any of the arguments to defined-predicate expressionsin queries, a powerful
feature. (A few exceptionsto thiswill be discussed in later chapters. some rules with nots, the arithmetic
and is constructs of Chapter 5, and the "cut" ("!") of Chapter 10.) That is, we can designate arbitrary
Inputs and outputs. This means that Prolog is fundamentally more powerful than conventional
programming languages, which usually require all but one argument (the output variable) to a procedure
to befilled in at the time of the call. But Prolog rules, the Prolog equivalent of procedures, rarely impose
such requirements.

Rule and fact order

Rules can go into a Prolog database just like facts. And the interpreter then uses both those rules and
facts to answer gqueries. But we must worry alittle about rule and fact order.

To see why, consider combining several reasoning methods in the same rule, as for instance three ways
of establishing the color of something:

color _object(X,C :- color(X, OC; (part_of(X Y), color(Y,Q);
(part_of (X,Y), part_of(Y,2), color(Z, Q).

(Queries and rules can take more than one line; the period at the end indicates where they stop.) But that's
poor rule-writing style, since it's hard to read the right side. Instead, we can write three separate rules
with the same left side:

color _object(X, C :- color(X O.
color _object(X, C :- part_of (X Y), color(Y,O.
color _object(X, C :- part_of(X Y), part _of(Y,2Z), color(Z C.

Now each rule's right side gives sufficient conditions for the left-side predicate expression to be true, but
not necessary conditions. That is, each describes some but not all the situations for which color _object
succeeds. When each rule is very specific, we have definition by examples.
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The order of those three rules matters. Whenever a query on predicate color _object with two arguments
isissued, the rules will be tried to answer the query in database order, just asif they were facts. The order
shown is probably the best, because the smplest rule will be tried first, then the next-simplest, then the
most complex (where we measure "complexity" by the number of expressions).

Facts and rules can be freely intermingled in a Prolog database; the overall order is all that matters. Facts
should generally come first, though, if there are both facts and rules for a predicate name. That's because
facts require less symbol matching than rules--and alot less than some of the recursive rules we'll discuss
later in this chapter. Putting facts before recursive rules of the same predicate is also the standard way to
write recursive programs (see Appendix B).

Rules as programs

So thisis how we'll write a Prolog program: by giving alist of facts and rules (definitions) that explain
about some area of human knowledge. To match a query, rules and facts will be considered in order,
somewhat like sequential execution of the lines of a program in a conventional computer language.
"And"s on the right sides of querieswill beinitially be done in left-to-right order, like multiple procedure
callsin aline of a conventional language. And like those languages, we can have "procedure” (rule)
hierarchies; that is, arule right side can use predicate names defined in rules, including its own left-side
predicate name (the last is called recursion).

This mapping of predicate expressions to actions means that we can model proceduresin Prolog, not just
facts. For instance, here's away to describe adaily agenda for a student:

day agenda :- wakeup, classes, |lunch, classes, dinner, study, sleep.
wakeup :- late, dress, travel (hone, canpus).

wakeup :- not(late), shower, dress, breakfast, travel (hone, canpus).
cl asses :- class, class, class.

cl ass :- check_schedule, go_room take_notes.

This notation is useful for describing processes, even if we never define what the basic actions (like
take notes) are. A computer doesn't need to know everything to be intelligent, just the important things.
(However, we'll introduce a better way to describe sequences of actionsin Chapter 9.)

Rules in natural language

Aswe said in Section 2.8, an artificial-intelligence system is often built from natural-language (e.g.
English) specifications, either oral or written. Rules can be specified severa waysin English. The easiest
to spot isthe "if...then" statement:

If avehicle floats on water, then it's a ship.
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which could become the Prolog rule (note the reversed order):
ship(X) :- vehicle(X), floats(X water).
But the "then" is often omitted:
If avehicle floats on water, it's a ship.
"Define" or "assume" often signals arule, taking the things in the opposite (Prolog) order:

Define a ship as anything that floats on water.
Assume as a ship anything that floats on water.

"Anything", "anyone", "any", "something", "some", and "a" in such definitions often map to Prolog
variables,

Besides expressing facts, the verb "to be" can expressrules:

A ship isany vehicle that floats on water.
Ships are water-floating vehicles.

The borderline between facts and rules can be fuzzy, but generally speaking, use arule when variable
bindings seem possible. The "a' and "any" in the first sentence suggest avariable, and hence arule.

When an "and" occursin the "if" part of a definition, we can just put commas into the right side of the
rule. For instance

Something that is avehicle and floats on water is a ship.

takes the form of the preceding ship(X) rule. If an "and" occurs in the "then" part of a definition, multiple
conclusions hold for some situation. Prolog doesn't allow "and"sin rule left sides, but we can write
multiple rules with the same right side and different left sides. So

If avehicle floats on water and is gray, then it isaship and of military origin.
becomes

ship(X) :- vehicle(X), floats(X water), gray(X).
origin(X,mlitary) :- vehicle(X), floats(X water), gray(X).
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Rules without right sides

The right side of arule represents sufficient conditions for the left-side predicate expression to be true.
What if arule doesn't have anything on itsright side? Then we'd be saying that nothing is necessary to
make the |eft side true, that the left side always true. In other words, afact. So facts are just a special case
of rules. That's why Prolog facts and rules are put together in one big database: they're the same thing.
But rules can have variables. What would it mean for afact to have avariable? Consider:

part of (X, uni verse).

If you think of that asarule with no right side, it says that for any X, nothing is necessary to say that X is

part of the universe. In other words, every X is part of the universe. So using aterm from logic (see
Appendix A), facts with variables are universally quantified.

Postponed binding

An interesting consequence of the Prolog interpreter's handling of rulesis"postponed” binding of
variables. Thisisinteresting because most other programming languages can't do anything like this.
Suppose we query:

?- col or_object(enterprise, C).

Here thefirst argument is bound (that is, it's an input) and the second argument is unbound (that is, it's an
output). If there'safact in the database

col or _object(enterprise,gray).

then the query can immediately bind C to gray. But if there are no color _object facts, only rules with
color_object on their left sides, or if aruleisfirst in the database, the binding may be delayed. For
instance, suppose the interpreter picks the rule

color_object(X,C :- part_of (X Y), color_object(Y,C.

The variable C won't be bound when the rule isinvoked, and it won't be bound in the part_of (which
doesn't mention C), so if it's ever bound it won't be until the recursive query of color_object. But this
guery may require other recursive calls. It may take along time for an appropriate color _object fact to
be found, and hence along time for variable C to get bound.

In fact, some query variables may never get bound to valuesin successful queries. Consider:
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recomrended( X, J) :- not(bad _report(X)).

arule that recommends person X for job J if they haven't had a bad report recently. Here J is never
bound if the query's second argument isn't initially bound. Most Prolog dialects will invent a name like
" 14" for such unbound variables, to print out if they must.

Postponing of binding in Prolog interpreters has the advantage that binding is only done when truly
necessary to answer a query. This saves on the computer's overhead cost of binding, for one thing.
Furthermore, multiway reasoning becomes easier, reasoning for which we don't know in advance which
arguments to a predicate expression (procedure) will be bound (or be inputs). Multiway reasoning means
the same rule can be used many ways. We'll look more into thisin the next chapter.

Backtracking with rules

Asyou remember from Chapter 3, backtracking isthe "backing up" the interpreter does when it can't find
amatch for a predicate expression in aquery. When predicates in a query have rule definitions, the
interpreter acts somewhat asif the right side of the definition were typed as part of a query instead of the
single predicate expression that isthe left side. (We say "somewhat" because variablesin arule areloca
In meaning, and parameter variables must get bound.) So backtracking into a predicate expression for a
rule-defined predicate means returning to the last expression in the rule. Tracing backtracking with rules
Is hard because we move both left and right (through backtracking) and up and down (through procedure
calls and returns). Thisis acommon problem with powerful computer languages such as Prolog: simply
because they're powerful, it's hard to follow everything they're doing.

Here's an example that isn't too hard. Suppose we have two kinds of facts about an organization: the
department each employee works for and the manager of each department. Suppose we define a boss
predicate of two parameter arguments B and E, that says that B is the boss of E if B manages a
department D in which E is an employee; D will be alocal variable. Assume that Tom worksin the sales
department, Harry works in the production department, Dick manages the sales department, and Mary
manages the production department. Then the Prolog database is:

departnment (tom sal es) .

departnent (harry, production).

manager ( di ck, sal es).

manager (mary, producti on).

boss(B,E) :- departnent(E, D), nanager (B, D).

Now suppose we want to find a boss different from Tom's. It will be X in the query:
?- boss(X, Y), not(boss(X,tom).

Notice that the not must come second in the query because X must be bound.
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L et ustrace execution (see Figure 4-2).

1. Thefirst predicate expression in the query matches only arulein the database, no facts,
so thefirst job to do is searching for amatch for the first expression on the right side of the
rule, department(E,D). This can be matched to the first fact, with E=tom and D=sales.

2. Moving on to the second predicate expression in the rule, manager (B,D), the interpreter
finds amatch in the third fact with B=dick, so the rule succeeds and the first expressionin
the original query succeeds. So X=dick and Y=tom.

3. Moving to the second and last expression in the query, not(boss(X,tom)), the interpreter
triesto find if Dick isthe boss of Tom. It has no memory of what it just proved, so it goes
back to therule.

4. Again, both predicate expressions on the right side of the rule can match the same facts,
so the rule succeeds. But the condition in the original query is the opposite ("not" or
negation) of this, so the second half of the original query fails and the interpreter
backtracks to the first expression. (There's never anew way to satisfy anot when it fails.)

5. Backtracking into a predicate expression satisfied previously by arule means that the
interpreter must go to the last (rightmost) expression on the right side of the rule and see if
it can find another match there. But there is no other boss of the sales department so it
must now backtrack to the first expression of the rule, department(E,D) with unbound B
and E.

6. Fortunately for thisthere is another choice: E=harry and D=production.

7. With this success, the interpreter can start moving right again. It considers the second
predicate expression in the rule. And it can find a match of B=mary (remember,
D=production now). So the rule succeeds, and thus the first expression of the query
succeeds with X=mary and Y=harry.

8. Now in the second query expression, it must check that it is not true that Mary isthe
boss of Tom. To do this, it tries to prove the boss rule fails with B=mary and second
argument tom.

9. Inthefirst expression on the right side of the rule, it can match D to sales, but thereisno
fact that Mary manages the sales department. So the rule fails, and since there is no other
rule or fact for the boss predicate, the second boss expression in the query fails.

10. But since there'sanot in front of this expression, the whole query succeeds. So
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X=mary isthe answer we needed.

To help in debugging, most Prolog interpreters will automatically print out abbreviated trace information
if you ask. To ask in most Prolog dialects, query the built-in predicate tr ace of no arguments. To stop the
tracing, query the built-in predicate notrace of no arguments. Some other debugging facilities of most
Prolog dialects are described in Appendix D.

Transitivity inferences

Certain rule forms occur frequently in artificial intelligence. A very important form states transitivity of a
two-argument predicate. For instance, consider bosses in an organization. If your boss has aboss in turn,
that big bossis your bosstoo. If that big boss has a boss in turn, that even bigger bossis your boss too.
S0 bossing relationships form chains, and that's transitivity.

Formally, arelationship predicate r istransitive if thisruleis correct:

r(x,Y) :- r(X, 2, r(Z,Y).

(See Figure 4-3.) Thissaysthat if predicate r holds from some X to some Z, and also from Z to some'Y,
the predicate always also holds from X to Y. This rule can be used recursively too; that is, it can refer to
itself on itsright side, not just to r facts. So the rule can follow indefinitely relationship long chains. For
instance, suppose these facts are placed in front of the rule in the Prolog database:

r(a, b).

r(b,c).

r(c,d).

Then if we query

?- r(a,d).

no facts match, so the interpreter will use the rule, and will first query
?- r(a, 2.

For this, Z can match b in thefirst fact. The interpreter will then query
?- r(b,d).

There's no fact stating this either, so it must use the rule again recursively. For this new call of therule,
X=b and Y=d, so the next query is
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?- 1(b,2).

Thisnew Z isdifferent from the previous Z, since each recursive cal hasits own variables (see
Appendix B), in the same way that X'sin different rules represent different X's. For this new query, the
interpreter can bind Z to c since thereisar (b,c) fact, and then the second part of the rule becomes the

query:
?- r(c,d).

That predicate expression is afact. So the rule succeeds in proving r(b,d). And thus it succeedsin
proving r (a,d), the original query.

Many of the relationship predicatesin Section 2.6 are transitive: a_kind_of, part_of, right_of, during,
and ancestor, for instance. Some example applications:

--If the Vinson is akind of carrier, and the carrier isakind of ship, then theVinsonisa
kind of ship.

--If the electrical system is part of the car, and the battery is part of the electrical system,
then the battery is part of the car.

--If the Vinson is north of the Enterprise, and the Enterprise is north of the Kennedy, then
the Vinson is north of the Kennedy.

--1f during the day Monday you had a meeting with your boss, and during the meeting you
found out you got promoted, then during the day Monday you found out you got promoted.

--If anumber X is greater than anumber Y, and Y is greater than anumber Z, then X is
greater than Z.

And agraphical exampleis shown in Figure 4-4. Here we are representing facts about a pile of blocks on
atable. A block is above another block if it is resting on that block. Block b is above block a, block cis
above block b, and block d is above block c. Hence by transitivity, block d is above block a.

Why istransitivity important? Because it can save fact space, by figuring out “indirect” facts from afew
direct ones. So it reduces redundancy. Transitivity will work best when we store facts relating only the
"closest" things--like for part_of, the very smallest thing B that still contains thing A. That's because
transitivity explains relationships between things farther apart from the same relationships between
things closer together, not the other way around.

Inheritance inferences
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An even more important rule form for artificial intelligence is the inheritance form. Consider a
bureaucratic organization. If it has only one business address, then that is the business address of all the
employees. It wouldn't make sense for a computer to keep a separate business address fact for each
employee; that would mean alot of unnecessary facts. Instead it should store a single address fact with
the name of the organization, and reason from that. This reasoning is called inheritance; we say the
address inherits from organization to employee.

Inheritance always involves two predicates, a property predicate and arelationship predicate. Formally,
we say property predicate p inherits with respect to relationship predicater if thisruleis correct:

p(X,Value) - r(X YY), p(Y, Value).

(See Figure 4-5.) That is, we can prove that property p of X hasvalue Vaueif we can provetheY is
related to X by predicater, and Y does have value Value for property p. (This generalizes the rule for
predicate color _object in Section 4.1.) Sometimes we use the term "inheritance’ when p is arelationship
predicate too. Like the transitivity rule, the inheritance rule can be used recursively--that is, the p on the

right side can use the rule itself to achieve its ends--but thisisn't too common because the r predicate can
recurse too.

Inheritance frequently occurs when the relationship predicate (r in the preceding) isa kind_of. That is,
if you want to know some property p of some X, find someY that Xis an example of, and Y'svalueis
X's value too. Some examples:

--If people are animals, and animals eat food, then people eat food.

--If the Enterprise is akind of ship, and ships float on water, then the Enterprise floats on
water.

But inheritance can occur with relationship predicates besides a_kind_of:
--If the hood is part of my car's body, and my car's body is gray, then the hood is gray too.

--If the U.S. Navy is part of the U.S. Government, and U.S. Government is everywhere
mired in bureaucratic inefficiency, then the U.S. Navy is everywhere mired in bureaucratic
inefficiency.

--If the Enterpriseis at Norfolk, and Captain Kirk is on the Enterprise, then Captain Kirk is
at Norfolk.

And a semantic network example is shown in Figure 4-6. Here we have facts about a particular truck
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called truck_4359 and its battery. The truck has alocation (nps_north_lot) and an owner (nps). These
properties inherit downward to the battery viathe part_of relationship to the battery, and that's what
those two dotted lines from the battery node mean. ("Downward" means from alarger or more genera
thing to a smaller or more specific thing.) In other words, the location of the battery of atruck comes
from the location of the whole truck, and the owner of the battery comes from the owner of the whole
truck. Inheritance can also proceed upward from the battery. The status property of the battery
(defective) inherits upward, because we can say that the truck is defective when its battery is defective.

Generally, properties that represent universal or "for every X" quantification (see Appendix A) inherit
downward, while properties that represent existential or "there exists an X" quantification inherit upward.
For instance, the "animals eat food" example is downward: this says that for every X an animal, it eats
food, and so since people are animals, they eat food too. But consider the property of people that some of
them livein North America, i.e. that there exist some people that live in North America. Then since
people are animals, some animals live in North America, so that existential property inherits upward.

Inheritance of a property need not be absolute--there can always be exceptions. For instance, the battery
may be removed from the truck for repair, so even though the truck location is the NPS north lot, the
battery location isn't. For such an exception, the location of the battery can be put into the database in
front of the inheritance rule, so a query on the truck's battery location will find the fact first. So an
inheritance rule is a default, general-purpose advice that can be overridden.

Inheritance is often associated with transitivity, because when the relationship predicater istransitive,
the interpreter is actually following atransitivity chain to follow an inheritance chain. For instance (see
Figure 4-7), suppose we have the facts

a_kind_of (vinson,carrier).

a_kind_of (carrier, ship).

a_ki nd_of (shi p, vehicle).

pur pose(vehicl e, transportation).

and arule for inheritance of purpose with respect to a_kind_of:

purpose(X,V) :- a_kind of (X Y), purpose(Y,V).

and arulefor trangitivity of a_kind_of:

a_kind_of (X,Y) :- a kind of(X 2), a kind of(ZY).

Suppose we query:

?- purpose(vehicle, P).
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We can use the transitivity rule to provefirst a_kind_of(vinson,ship), then a_kind_of(vinson,vehicle);
the latter inferred relationship is shown by a dotted link in the Figure. Then the inheritance rule succeeds,
proving pur pose(vinson,transportation); thisis a'so shown by a dotted link.

Thus inheritance is useful for the same reason as transitivity: it can extrapolate an explicit set of factsto a
much larger implicit set of facts, by inferences with rules. It usually makes sense, then, to only store
"nonredundant” property facts that can't be inherited (though it won't give wrong answers to store
redundant information, just increase the size of the database and slow other queries alittle). So we
typically should store property facts about properties for the most general things having those properties.
Thisis because inheritance usually goes downward from more general things to more specific things.

Some implementation problems for transitivity and inheritance

Unfortunately, peculiarities of Prolog interpreters can prevent transitivity and inheritance rules from
working properly. The problem is a possible infinite loop, a frequent danger in Prolog programming. An
infinite loop is when the same thing is done over and over forever when trying to answer a query.
Typically, arule callsitself forever or a set of rules call one another in cycle forever. (A good clueisthe
error message "Out of stack space” when running a simple program.) Y ou can get into infinite loopsin
other programming languages too, but it's easier with Prolog because of its emphasis on recursion and
complicated backtracking.

To avoid infinite loops for inheritance, we must pay careful attention to database order. We must put any
rules about inheriting values for some property after facts about values of that property. We should also
use

p( X, Value) :- r(XY), p(Y, Value).

instead of

p(X, Value) :- p(Y,Value), r(XY).

The second rule can cause an infinite loop in which p continually calls itself with the same arguments.
Thiswon't happen at first, if facts that can match the p query come before this rule in the Prolog
database; but whenever the proper answer is no (either when the only possible answer to the query isno,
or when we type enough semicolons after other answers), the interpreter will recurse forever instead of
saying no. Thisis because Prolog executes top-down like other programming languages: the |eft side of a

rule is matched to some query, and then the right side provides new things to match. So be careful with
inheritance rules. In fact, as much British detective fiction demonstrates, inheritances can lead to murder.

But it's tougher to eliminate the infinite loop with the transitivity rule:

r(x,Y) :- r(X,2), r(Z,Y).
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Thisworks fine when ther relationship is provable from the facts, but will never say nowhenr is
unprovable. For instance, query

?- r(a,b).

won't say no when there are no facts in the database involving either a or b: the first predicate expression
on the right side has no choice but to call on thisruleitself. Here reordering the expressions on the right
side of the rule won't change anything, because both have predicate r. Instead we must rewrite the rule as
two, and use another predicate name, one for queries only. For instance, consider transitivity for the boss
relationship, where boss(X,Y) means that person X isthe boss of person Y. To describe indirect bosses,
we'll use anew predicate superior of two arguments:

superior(X, Y) :- boss(XY).
superior(X,Y) :- boss(X Z), superior(ZY).

Thiswill avoid the infinite loop because the only recursion isin the second rule, and the form of the
second rule isthe same as the first (better) form for inheritance rules given previously.

A similar trick can be used to state symmetry or commutativity of atwo-argument predicate. Examples of
commuitative predicates are the equals predicate for numbers, the "distance-between” predicate for
places, and the "is-friends-with" predicate for people. The obvious rule can easily cause infinite loops:

P(X Y) - p(Y, X).
Querying ap2 instead avoids this problem:

p2(X,Y) - p(X,Y)
p2(X,Y) - p(Y,X)

provided we don't use p2 in arecursive rule itself.
A longer example: some traffic laws

Rules can do many things. As we have seen, rules can define new predicates and extend the power of old
predicates. Rules can aso state policies, prescriptions of what to do in particular situations. Hereis an
example of the representation of Californiatraffic laws. These are the laws about signal lights, for both
vehicles and pedestrians, from the California Driver's Handbook, 1985. The lettersin brackets are
paragraph codes for later reference.

[A] New Signals-Note: Californiais adopting red arrows and yellow arrows in addition to
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green arrows, as signals for vehicle traffic. Thisis what the colors of traffic lights mean: A
red light or arrow means "STOP" until the green appears. A flashing RED traffic light or
arrow means exactly the same as a stop sign, namely STOP! But after stopping, proceed
when safe, observing the right-of-way rules.

[B] A GREEN light or arrow means "GQ", but you must let any vehicles or pedestrians
remaining in the intersection when the signal changes to green, get through before you
move ahead. Look to be sure that all cross traffic has stopped before you enter the
Intersection.

[C] A YELLOW light or arrow warns you that the red signal is about to appear. When you
see the yellow light or arrow, you should stop if you can do so safely. If you can't stop,
look out for vehicles that may enter the intersection when the light changes. A flashing
YELLOW light or arrow isawarning of a hazard. Slow down and be especialy alert.

[D] A lighted GREEN ARROW, by itself or with a RED, GREEN or YELLOW light,
means you may make the turn indicated by the green arrow. But give the right-of-way to
pedestrians and vehicles which are moving as permitted by the lights. The green arrow
pointing left allows you to make a"protected” left turn; oncoming traffic is stopped by a
red light as long as the green arrow is lighted.

[E] If the green arrow is replaced by aflashing yellow light or arrow, slow down and use
caution; make the move which the green arrow would permit, only when safe for you and
others.

[F] If the green arrow isreplaced by aflashing red light or arrow, stop for either signal;
then go ahead when it's safe to do so.

[G] NEW SIGNALS--Note: Californiais adopting international symbolsto guide
pedestrians at street crossings. An upraised hand (orange) means the same as the "WAIT"
or "DON'T WALK" sign. A walking person symbol (white) means the same as the
"WALK" sign.

[H] Specia signsfor walkers: The "DON'T WALK" or "WAIT" or upraised hand sign, if
flashing, warns the walker that it is safe to cross, first yielding to any vehicles which were
still in the crossing when the light changed.

[I] At acrossing where there are no special pedestrian signals, walkers must obey the red,
yellow, or green lights or arrows. But walkers facing a green arrow must not cross the
Street.

We can represent the preceding text as a set of Prolog rules in four groups: rules about arrows, rules
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about cars, rules about pedestrians, and default rules (the last two action rules). Aswe said, defaults are
weak prescriptions for general cases, only used if more specific advice cannot be found; for instance, the
first default rule says that if nothing prevents you from going forward, go forward.

In listing these rules, we follow a standard Prolog convention of putting blank lines between groups of
rules with the same | eft-side predicate name; this makes reading long programs easier. We also use
comments; anything between the symbols"/*" and "*/" is treated as a comment and ignored by the
Prolog interpreter. The codes at the beginning of lines reference the relevant paragraph(s) of the Driver's
Handbook text. Note that the text and rules do not correspond exactly; in fact, some "obvious' rules
included are nowhere in the text. What's "obvious' to people isn't always so obvious to computers.

[* ------ Rules for arrowlights ------ */

/* A *| action(car,stop) :- light(yellow arrow, D rection),
saf e_st op_possi bl e.

/* D,E */ action(car,yield and leftturn) :-
| ight (yell ow arrow, | eft), not(safe_stop possible).

/* D,E */ action(car,yield and rightturn) :-
| i ght (yell ow arrow, right), not(safe_stop _possible).

/* D */ action(car,yield and |leftturn) :- light(green_arrow, left).
/* D */ action(car,yield and rightturn) :- light(green_arrow,right).
[* ------ Rules for regular lights ------ */
/* A *|] action(car,stop) :- light(red, steady).
/* A */ action(car,stop _and go) :- light(red,flashing).
/* C*|] action(car,stop) :- light(yellow, steady),
saf e_st op_possi bl e.
/* C*| action(car,yield and go) :- light(yellow, steady),
not (saf e_stop_possi bl e).
/* B */ action(car,yield and go) :- |ight(green, steady).
/[* C */ action(car,slow) :- light(yellow flashing).
/* A *| action(car,stop) :- light(red_ arrow Direction).
[* ------ Rul es for pedestrian lights ------ */
action(pedestrian,stop) :- pedhalt(steady).
/* | */ action(pedestrian,stop) :- not(pedsignals), greenfacing.
action(pedestrian,stop) :- pedhalt(flashing),
saf e_st op_possi bl e.
/* H*/ action(pedestrian,yield and go) :- pedhalt(flashing),
not (saf e_stop_possi bl e).
/* H*/ action(pedestrian,yield and go) :- pedgo(steady).
[* ------ Default rules ------ */
/* | *| action(pedestrian,A) :- not(pedsignals), not(greenfacing),
action(car, A.
action(X, go) :- not(action(X, stop)),

not (acti on( X, stop_and _go)).
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[* ------ Rul es defining the special terng ------ */
/* G */ pedhalt(State) :- light(wait, State).

/* G */ pedhalt(State) :- |ight(dont_walk, State).
/* G */ pedhalt(State) :- |ight(hand, State).

/* G *| pedgo(State) :- light(walk, State).

/* G *| pedgo(State) :- |ight(wal ki ng_person, State).

pedsignals :- pedhalt(State).
pedsignals :- pedgo(State).

greenfacing :- light(green_arrow,right),
not (cl ockwi se_cross).
greenfacing :- light(green_arrow, |l eft),

cl ockwi se_cross.

To understand programs like this, it's often a good idea to draw a predicate hierarchy (actually, alattice)
showing which predicates refer to which other predicates within their definitions. This helps distinguish
high-level predicates about abstract things from low-level predicates about details. Figure 4-8 shows the
predicate hierarchy for this program.

The rules of this program define legal actions in particular traffic situations. To use them, we query the
predicate action with unbound variables (outputs) for one or both of its arguments. The first argument to
action represents whether you are a pedestrian or in acar, and the second argument represents a legal
action in the situation. So for instance, action(car,stop) meansthat it islegal for the car to stop. The
most useful way to query action isto make the first argument an input and the second argument an
output. So to know what islegal for acar, query

?- action(car, X).

and the variable X will be bound to a description of some action legal with the current facts; to know
what islegal for a pedestrian, query

?- action(pedestrian, X).

To check if some particular action islegdl, fill in both arguments. If a sequence of actionsislegal,
instead of just one, the program puts the characters” _and_" between the actions to form one long word.
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To describe a situation, three kinds of facts are needed:

--light(<kind-of-light>,<light-status>): thisis the main kind of fact. The first argument is
either:

red (acircular red light)

yellow (acircular yellow light)

green (acircular green light)

red_arrow

yellow_arrow

green_arrow

wait (the word "wait" lit up)

dont_walk (the words "don't walk" it up)
hand (a picture of a human palm)

walk (the word "walk" lit up)
walking_person (a picture of awalking person)

The second argument describes the condition of the light; thisis either left or right for the
arrow lights, and either steady or flashing for all the other lights.

--safe _stop_possible: this predicate of no arguments asserts that you can stop quickly and
safely.

--clockwise cross: if you are a pedestrian, this predicate of no arguments asserts that the
path by which you will cross a street is clockwise with respect to the center of that street.

For example, here are the facts for when you are in a car approaching an intersection with plenty of room
to stop, and you see a steady yellow light and a green arrow light pointing to the left:

saf e_st op_possi bl e.
| i ght (yel | ow, st eady) .
| i ght (green_arrow, | eft).

Rule order matters, since it establishes priorities among actions. Rules for arrows should go before rules
for other kinds of lights, because arrows override other lights showing. Within each of the three main
groups of rules--arrows, regular lights, and pedestrian lights--the rules for stopping should go first to
handle malfunctions of the lightsin which more than one light islit. Finally, defaults should go last, like
the last two action rules.

Running the traffic lights program

Here are some examples of the program working. Suppose our database is the example facts just given.
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Suppose we ask what a car can do:
?- action(car, X).

Thefirst three rulesfail because there are no facts about yellow arrows. But a green arrow to the left is
visible, so the fourth rule succeeds, and we get

X=yield and leftturn

In other words, in this situation it is legal to yield and then make aleft turn. Now if we type a semicolon,
the interpreter will try to find an alternative action. It starts from where it left off in the rules, so it next
examines the fifth rule. Neither the fifth, sixth or seventh rules are satisfied by the three facts, but the
eighth rule does succeed. So we get

X=st op

In other wordsiit islegal to stop your car. If we type a semicolon once more, the query will fail (the last
rulefails becauseit islegal to stop the car, as we just showed). So there are only two alternatives.

For another example, suppose a pedestrian walking along a sidewalk comes to an intersection where they
wish to cross the street in a clockwise direction with respect to the center of the intersection. Suppose
that in the direction the pedestrian wants to go there is a steady green light and a flashing white picture of
awalking person. The representation is.

cl ockwi se_cross.
| i ght (gr een, st eady).
| i ght (wal ki ng_person, fl ashi ng).

To discover what we can do, the query is
?- action(pedestrian, X)

None of the first twelve rules succeed because this query specifies a pedestrian. For the thirteenth rule to
succeed, a pedhalt rules must succeed, but the lights we observe are not any of the three pedhalt types.
So the thirteenth rule fails, and similarly the fourteenth and fifteenth. For the sixteenth rule we must
check the pedgo rules. Thefirst pedgo rule fails, but the second matches our last fact with the
State=flashing. So the sixteenth rule succeeds, and we get typed out

X=yi el d_and_go

which recommends to the pedestrian to first yield the right-of-way, then go ahead.
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This program should be invoked repeatedly, say every second to decide what to do for that second. And
each second something must delete old facts and write new facts into the Prolog database. This general
approach is followed by most real-time artificial intelligence programs. For speed, each updating can be
done by a separate concurrent processor, to avoid interfering with inference. Notice that we have ignored
the biggest obstacle to making this program practical, the recognizing of lightsin the real world. Thisis
addressed in the "vision" subarea of artificial intelligence.

Declarative programming

The traffic lights program may not seem much like programsin other programming languages.
Programming in Prolog (and much artificial intelligence programming, whatever the language) is
different in style from most programming. The style is programsin lots of small modular pieces, pieces
smaller than the usual subroutines and procedures of other languages. The emphasisis on writing correct
pieces, and not on putting the pieces together. In writing and debugging each piece, the emphasisison
whether it makes sense by itself and whether it islogically correct, not how it is used--the "what" instead
of the"how". Thisis called declarative programming | REFERENCE 1. .FS | REFERENCE 1] It'saso
close to what is called nondeter minism or nondeter ministic programming. .FE

This bothers some students. They feel they don't really understand artificial intelligence programs
because there's often no clear, easily understandable sequence in which programs do things. Prolog
interpreters for instance work from top to bottom through facts and rules with the same predicate name,
but for each new predicate in a query, they jump to the first occurrence of that predicate name, and jump
around in quite complicated ways when they backtrack. And Prolog's operation represents one of the
simpler waysto do artificial intelligence programs, as we'll seein Chapter 6. A programmer accustomed
to flowcharts may find this bewildering.

In reply, one can say that artificial intelligence solves hard problems, problems on which conventional
software-engineering techniques (including numerical ones) struggle, and for which artificial-intelligence
methods seem to be the only ones that work. And there are no clear criteriafor "intelligent behavior”, so
in designing intelligent programs it would seem more important to ensure that the individual pieces of the
program make sense rather than imposing some grand (necessarily controversial) organizing scheme.
Usually, researchers don't want artificial intelligence programs to be brilliant, just not dumb, and
concentrating on the pieces helps avoid being dumb. Also, the well-known software technique of
recursion (see Appendix B and Chapter 5) is best understood in a declarative way, and artificial
intelligence often uses recursion.

This still may not sound too reassuring, but remember there are lots of waysto program. Aswe say in
California, stay mellow.

Keywords:
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.SH Exercises

4-1. (E) What's the difference between ":-" and logical implication? In other words, what's the difference
between a :- b. and the logical statement

"If bistrue, then aistrue."

4-2. (A) (a) Suppose in adatabase you had a rule whose right side was guaranteed to be always true.
How could you get the effect of such arulein asimpler way?

(b) Suppose in a database you had a rule whose right side was always guaranteed to be false for any
assignment of bindings. How could you get the effect of such arulein asimpler way?

4-3. Write rules for reasoning about genealogies (or "family trees'). Assume the genealogy is represented
by facts of the single four-argument form

chi | d(<nanme_of fat her>, <nane_of not her >, <nane_of chil d>, <sex>).
Define the following new predicates based on the child facts:

father (X,Y), meaning X isthe father of Y

mother (X,Y), meaning X isthe mother of Y
son(X,Y), meaning X isthe son of Y

grandfather (X,Y), meaning X isthe grandfather of Y
sister (X,Y), meaning X isthe sister of Y

uncle(X,Y), meaning X isthe uncle of Y

ancestor (X,Y), meaning X isthe ancestor of Y
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half sister(X,Y), meaning X isthe half-sister of Y
4-4. (P) Figure 4-9 is apicture of three stacks of blocks on atable.

(a) Represent in Prolog the facts describing the rel ationships between the blocks. Use two predicates, one
that says a block is on another, and one that says a block isimmediately to the left of another. Only give
facts of the second type for blocks at the bottom of piles.

(b) Typeyour factsinto afile.
(c) Now ask the Prolog interpreter:

--what blocks are on block B;

--what blocks block A ison;

--what blocks are on other blocks;

--what blocks are on blocks that are immediately to the left of other blocks.

(d) Define anew predicate above which is true when ablock is anywhere in the stack above another
block. Define a new predicate stackleft when ablock isin a stack that isimmediately to the |eft of the
stack of another block. Put these into your file, and load the whole thing.

(e) Now ask the Prolog interpreter:

--what blocks are above other blocks,

--what blocks are either above block F or in a stack immediately to the left of its stack;
--what blocks are above other blocks but are not in a stack immediately to the left of any
block.

4-5. (A) Consider therules:

a(X) :- not(b(X)).

b(X) :- not(c(X)).

Assuming predicate b is never referenced except in the preceding, and is never queried directly, and there
are no facts with predicate b, would it be equivalent to define asingle rule

a(X) - c(X).

Why?
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4-6. (A) (a) Consider the following to be true:

Clint isthe mayor.
The mayor is respected.

From this we can conclude that:
Clint is respected.
But now suppose:

Clint isthe mayor.
The mayor is an elected office.

From this we would seem to be able to conclude:
Clint is an elected office.

What is the fallacy in reasoning?

(b) Consider the following to be true:

Clint isamovie star.
Clint is mayor.

From this it makes sense to conclude:
A movie star is mayor.
But now suppose as true:

Johnisalittle stupid.
John is mayor.

It is fallacious then to conclude:
A little stupid is mayor.

What isthe fallacy?
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4-7. (A,E) Explain using Prolog concepts the different meanings of the word "and" in the following.
(a) A food crop isanything that is a plant and provides substantial human nutrition.

(b) A department chairman is a professor and is responsible to the provost.

(c) To put out afire, your options are to apply flame retardants and to let it burn itself out.

(d) Tom and Sue are managers.

(e) Tom and Sue are friends.

4-8. Consider this query:

?2- a(XyY), b(XY).

used with this database:

a(l, 2).

a(3,5).
a(R'S :- b(RS), b(S,R.

b(1,3).
b(2, 3).
b(3,T) :- b(2,T), b(1,T).

Without using the computer, what is the first answer found to the query?

4-9. Inheritance involves athing and a property. Suppose the thing is a computer program. Give two
different examples of relationship predicates that are involved in inheritance, and the corresponding
properties.

4-10. (A) Consider the type predicate some of two arguments <set> and <property> which istrue
whenever some members of <set> have <property>. So for instance some(people,american) means that
some people are American. Consider inheritance involving the "set containment" relationship predicate.

(@) Does some inherit upward (to an including set), downward (to an included set), both, or neither?
(Note: inheritanceisonly "yes' or "no", never "maybe".)

(b) Write the inheritance for part (a) as a Prolog rule.
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(c) Consider the similar predicate all which istrue whenever all members of <set> have <property>. So
for instance all (people,american) means that all people are American. Does it inherit upward,
downward, both, or neither?

(d) Consider the similar predicate most which is true whenever most members of <set> have
<property>. Doesit inherit upward, downward, both, or neither?

4-11. (R,A) Suppose we have facts about the components of a car. Suppose:

--front_of (X,Y) means part X of the car isin front of part Y (towards the headlights);
--inside_of(X,Y) means part X of the car isinside (contained in) part Y.

(@) Isinside _of transitive?
(b) Doesfront_of inherit with respect to inside_of? If so, in which direction?

(c) Why could it be more useful for a program to have a description of where things are under the hood
of acar intermsof front_of, right_of, and above facts instead of in terms of Cartesian (x, y, and z)
coordinates?

4-12. Consider the accounting department of some organization you know. For each of the following
properties, say whether it inherits (1) upward, to some entity including the accounting department, (2)
downward, to some entity included in the accounting department, (3) both directions, or (4) neither
direction.

(@) There are crooksin it.

(b) Half the employeesin it are crooks.

(c) Regulations controlling crookedness are enforced.

(d) All crooksin it have been caught and punished.

4-13. (R,A,P) (a) Represent the following facts in Prolog (binary-relationship predicates are
recommended). Represent what the words mean, not what they say; each different word shouldn't
necessarily be a different predicate name or argument. Type your Prolog facts into a computer file.

An Acme hotplate has a cord and a body.

Part of the body of an Acme hotplate is the heating element.
The heating element is metal.

Another part of the body of an Acme hotplate is the cover.
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The cover has a knob.

Plastic is always used for knobs.

One of the things a cord consists of isawire.
Metal comprisesthe wire.

Part of the cord is an insulater.

Theinsulater isfiber.

(b) Start up the Prolog interpreter, load the file, and ask

--what things are stated to contain metal;
--what things are stated to be parts of the body of a hot plate.

(c) Definerulesfor trangitivity of part_of and upward inheritance of material with respect to part_of,
rules that can be applied to your answer to part (a). Put thesein thefile.

(d) Now ask:

--what things contain plastic;
--what things do not contain fiber;
--what things containing metal also contain fiber.

4-14. Suppose we have a_kind_of facts about 31 objects. Suppose by transitivity on these facts we can
show that object a is akind of object b. Suppose the facts have no redundancy (two different routes
between the same two objects by following arrows) and no cycles (ways to leave an object and return by
following arrows).

() What is the minimum number of times that you could successfully use the recursive transitivity rule
(the rule, not any fact) proving this? Use the two-rule form in Section 4.10.

(b) What is the maximum number?

(c) Suppose 30 of the 31 objects appear once and only once each as the first argument to the a_kind_of
facts. Suppose 16 of the 31 objects never appear as a second argument and suppose the rest appear
exactly twice each as a second argument. Of the remaining 15 that do appear as a second argument, 8 of
them appear in facts with the 16; of the remaining 7, 4 appear in facts with the 8; of the remaining 3, 2
appear in facts with the 4; and the remaining one appears in facts with the 2. What data structure does the
semantic network resemble?

(d) For the situation in part (c), what is the maximum number of times the recursive transitivity rule
could be successfully used to prove that object aisakind of object b?

(e) Suppose b has property v, and suppose that a inherits this value because a isakind of b. Assume as
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before there are 31 objects total. What is the maximum number of times the inheritance rule (of the form
of the first onein Section 4.9) could be successfully used proving this?

4-15. (a) Represent the following as Prolog facts and rules (definitions). Hint: represent what these mean,
not what they literally say. Be as general as you can.

A VW RabbitisaVW.

Tom's car isaVW Rabbit.

Dick's car isaVW Rabbit.

A VW has an electrical system.

Part of the electrical system isthe alternator.
The aternator is defective on every VW.

(b) Write Prolog inference rules that will allow conclusion that Tom's car or Dick's car is defective. Hint:
you need to define transitivity and inheritance for conceptsin part (a).

(c) Provethat Dick's car is defective, given the facts and rules of parts (a) and (b). (Don't prove it the way
a Prolog interpreter would--omit dead ends.)

4-16. (P) Write Prolog definitions for the California speed laws that follow, as extracted from the
California Driver's Handbook. Y our top-level predicate should be called limit, with one argument, an
output variable. The program should set that variable to the legal maximum speed under the current
conditions. The current conditions should be specified as Prolog facts.

Don't worry too much about the predicates you use here; there's much room for personal taste. Instead,
worry about the order of Prolog definitions and facts. Note you must handle the situation in which you
may have seen several road signs recently, some perhaps contradictory, and you must decide which ones
apply. Assume though that any other facts (like the presence of children) apply to the immediate vicinity.
Warning: you'll find the laws unclear about certain situations; just pick something reasonable in those
cases.

"The maximum speed limit in Californiais 55 miles per hour. Other speed limit signstell
you the highest speed at which you can expect to drive with safety in the places where the
signsare set up...."

"In business or residence districts, 25 miles per hour is the speed limit unless signs show
other limits. When you see a"SCHOOL" sign, the speed limit is 25 miles per hour while
children are outside or are crossing the street during school hours. The 25 m.p.h. limit
applies at all times when a school ground is unfenced and children are outside, even
though the road is posted for a higher speed. Lower speed must be obeyed if posted...."

"When you come within 100 feet of arailroad crossing and you cannot see the tracks for
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400 feet in both directions, the limit is 15 m.p.h. Thislimit does not apply if the crossing is
controlled by gates, awarning signal or aflagman.”

"The 15 m.p.h. limit also applies at blind intersections where you cannot see for 100 feet
both ways during the last 100 feet before crossing, unless yield or stop signs on the side
streets give you the right of way--also in any alley."

Astests, run the program to find the limit at each point in the following scenario:
(@) You enter aresidential district. A sign says 55 m.p.h.

(b) You are still in the residentia district. Y ou come to a SCHOOL sign, and students are on the
sidewalks. Thetimeiswithin school hours.

(c) A speed limit sign says 35 m.p.h. You enter an dley.

4-17. (E) Explain in what ways legal definitions are different from Prolog definitions. Is this a weakness
of legal definitions, aweakness of Prolog, both, or neither? Should the two evolve closer together?

4-18. (E) Definitions of termsin politics don't seem to be very much like Prolog terms. For instance,
what one nation calls an unprovoked military attack may be considered by the attacking nation as
"claiming what is rightfully theirs' or "preventing terrorism". These excuses are not arbitrary but are
supported by dictionary definitions. What makes political definitions so much more dlippery than the
Prolog definitions of this chapter?

4-19. There are severa part-whole relationships, even for the same object. Consider a piece of rock
consisting of | 10 sup 24 | molecules of silicon dioxide, whose chemical formulais|S O sub 2|.

(a) Give an interpretation of part_of for which the color property inherits to any part of this rock.

(b) Give an interpretation of part_of for which the number _of molecules property inherits to any
subpart.

4-20. Consider the following proof that God does not exist. Take the following statement as true from the
definition of God:

God saves those who can't save themsealves.

(a) Write this as a Prolog rule whose left side and right side both refer to a saves predicate of two
arguments.
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(b) Suppose the person saved is God. Show the bindingsin the rule, and explain what the rule becomesin
this case.

(c) Asyou can seg, there's a serious logical problem here. Does this prove God doesn't exist? Why?

Go to book index
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Arithmetic and lists in Prolog

Before going any further, we need to introduce two additional features of Prolog that will comein handy in
writing future programs, arithmetic and lists. These give rules new capabilities. As we've seen aready, rules
can:

1. define new predicatesin terms of existing predicates
2. extend the power of existing predicates (as with inheritance rules)
3. recommend what to do in a situation (as with the traffic lights program)

To these, we'll now add:

4. quantify and rank things
5. store, retrieve, and manipulate sets and sequences of dataitems

Arithmetic comparisons

Prolog has built-in arithmetic comparison predicates. But their predicate expressions are written differently
from those shown so far: they're written in the infix notation of mathematics. The predicate name comes
between the arguments, like this:

3 >4 means 3 isgreater than 4

15 = 15 means 15 equals 15

X <Y means X islessthan Y

Z >= 4 means Z is greater than or equal to 4
PPPP =< 3 means PPPP is less than or equal to 3

WEelll usually put spaces around infix symbols to make them easier to see, but it's not required. As an example,
here's the definition of a predicate that checks if a number is positive:

positive(X) :- X > 0.

With this definition in our database, it could be used like this:
?- positive(3).

yes

?- positive(-6).

no

Here's the definition of a predicate that checksiif itsfirst argument is a number lying in the range from its
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second to its third argument, assuming all arguments are bound:

in_range(X, Y,2) :- X>=Y, X =< Z

Using this definition, the query

?- in_range(3,0, 10).

gives the response yes.

Arithmetic assignment

Like any computer language, Prolog has arithmetic computations and assignment statements. Arithmetic
assignment is done by expressions with the infix is predicate. Querying these peculiar expressions has the side
effect of binding some variable to the result of some arithmetic computation. For instance
Xis(2*3) +7

binds (assigns) X to the value 13 (2 times 3 plus 7). The thing to the left of the is must be a variable name, and
the stuff to the right must be an algebraic formula of variables and numeric constants, something that evaluates
to anumber. The algebraic formulais written in standard infix form, with operations +, (addition), -
(subtraction), * (multiplication), and / (division). Well often put spaces around these symbols to make them
more readable. The algebraic formula can have variables only if they're bound to values, asin

Yis 2, XisY*Y.

where Y isfirst bound to 2, and then X isbound to 4. A practical exampleisthis definition of the square of a
number, intended to be a function predicate:

square(X,Y) :- Yis X * X

If thisruleisin the Prolog database, then if we query

?- square(3,Y).

(that is, if we ask what the square of 3 is), the Prolog interpreter will type

Y=9

Notice that since predicate expressions aren't functionsin Prolog, we can't write anything like

F(XY) + 9(X 2)
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even if f and g are function predicates, because expressions only succeed or fail; expressions don't have
"values'. Instead, to add the two function values we must say something like

f(XY), g(X,2, TisY+ Z

Another warning: don't confuse = withis. The = isapurely logical comparison of whether two things are
equal. (Originally intended for numbers, it also works for words.) Theisis an operation, an arithmetic
assignment statement that figures out avalue and binds avariable to it.

Reversing the "is"

A serious weakness of arithmetic, which makes it different from everything else in Prolog we've talked about
so far, isthat it isn't multiway or reversible. For instance, if we have the preceding definition of squarein our
database, and we query

?- square(X 9).

wondering what number squared is 9, the interpreter will refuse to do anything because the right side of theis
statement refers to an unbound variable. Thisis different from having a bunch of arithmetic facts in prefix
form like

square(0,1).
square(1,1).
square(2,4).
square(3,9).

for which we could query squar &(3,Y) or square(X,9) or even square(X,Y) and get an answer. Similarly, for
the preceding definition of positive, the query

?- positive(X).

won't work: the interpreter can only do a> comparison when both things are bound to numbers. So it will
complain and refuse to do anything.

The Prolog interpreter's excuse for its behavior is that function inversion and other such multiway reasoning is
hard to do in general, and sometimesisimpossible. A square of a number is easy to compute, but a square root
requires iterative approximation and alot more code. And there are an infinity of positive numbers; where
should an interpreter start when asked to give one? Artificial intelligence requires flexible reasoning capable
of going in many different directions--people seem to do it. So it's desirable to get around the interpreter's
limitations.

One way isto provide additional rules for a predicate definition. Helpful in thisis the built-in Prolog predicate
var of one argument, which succeeds if that argument is an unbound variable, and fails otherwise. Asan
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example of its use, consider abetter _add predicate of three arguments which says the sum of the first two
argumentsis the third argument. If all three arguments are bound (inputs), then it checks the addition. If the
first two arguments are bound, it binds the third to their sum. If the first and third arguments are bound, it
binds the second to the difference of the third and the first. Similarly if the second and third arguments are
bound, it binds the first to the difference of the third and second. Here's the code (Z is atemporary-storage
variable):

better_add(X Y,YS)
Zis X +Y, Z=S
better _add(X Y,YS)

not (var (X)), not(var(Y)), not(var(S)),

not (var (X)), not(var(Y)), var(9S),

Sis X+Y.

better_add(X Y,S) :- not(var(X)), var(Y), not(var(S)),
Yis S- X

better _add(X, Y,S) :- var(X), not(var(Y)), not(var(S)),
Xis S-Y.

We can't handle two arguments unbound; then there's an infinite number of possibilities for the bindings. But
at least the preceding handles three more cases than the Prolog is can handle by itself.

Thein_range predicate of Section 5.1 can provide another example of a predicate enhancement. That
predicate checked whether its first argument (an input number) was between the second and third arguments
(input numbers too). We can improve in_range so that an unbound first argument will make it generate a
number between other two arguments, and generate further numbers on backtracking. To make things easier,
we'll assume all numbers will be integers. Here's the definition of thisinteger _in_range:

i nteger_in_range(XY, 2)
X>=Y, X=x< Z

integer _in_range(X Y,Z) :- var(X), not(var(Y)), not(var(2)),
Y =< Z, XisY.

integer_in_range(X VY,2) - Y=<Z, Y2is Y + 1,

I nteger _in_range(X Y2, 2).

not (var (X)), not(var(Y)), not(var(2)),

Thisisatail-recursive program of aform we'll use many timesin this chapter. (Again, see Appendix B to
review recursion.) Thefirst rule handles the case handled before. The second rule says if X isunbound and Y
and Z are bound, and we want to generate an integer on therange Y to Z, we can always pick Y. Otherwise (if
asemicolon istyped), the third ruleis used. It "crosses out" Y from the range by increasing the lower limit of
the range by 1, and generates an integer from this new, narrower range. If the range ever decreases so much
that it disappears, al the rulesfail. So if we query

?- integer_in_range(X 1, 10).

the interpreter first replies X=1; then if we type a semicolon, X=2; then if we type a semicolon, X=3; and so
on up to 10.
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Lists in Prolog

Another important feature of Prolog islinked-lists. Every argument in a predicate expression in a query must
be anticipated and planned for. To handle sets and sequences of varying or unknown length, we need
something else: linked-lists, which we'll henceforth call just lists.

Lists have always been important in artificial intelligence. Lisp, the other major artificial intelligence
programming language, is almost entirely implemented with lists--even programs are listsin Lisp. The extra
gpace that lists need compared to arrays (see Appendix C) is more than compensated in artificial intelligence
applications by the flexibility possible.

Square brackets indicate a Prolog list, with commas separating items. For example:
[ ronday, t uesday, wednesday, t hur sday, fri day, sat ur day, sunday]

(Don't confuse square brackets "[]" with parentheses"()"; they're completely different in Prolog. Brackets
group lists and parentheses group arguments.) Lists can be values of variables just like words and numbers.
Suppose we have the following facts:

weekdays( [ nonday, t uesday, wednesday, t hur sday, fri day]).
weekends( [ sat ur day, sunday]) .

Then to ask what days are weekdays, we type the query

?- weekdays( Days).

and the answer is

Days=[ nonday, t uesday, wednesday, t hur sday, fri day]

We can also bind variables to items of lists. For instance, if we query

?- weekends([ X, Y]).

with the preceding facts in the database, we get

X=sat urday, Y=sunday

But that last query requires that the weekends list have exactly two items; if we query
?- weekends([ X, Y, Z]).

we get no because the query list can't be made to match the data list by some binding.
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We can work with lists of arbitrary length by the standard methods for linked-pointer list manipulation. We
can refer to any list of one or more itemsas[X|Y], where X isthefirst item and Y istherest of thelist (that is,
the list of everything but the first item in the same order) | REFERENCE 1]. .FS | REFERENCE 1] In the
language Lisp, X iscalled thecar and Y iscalled cdr of thelist. .FE Well call "|" the bar symbol. Note that
[X]Y] isquite different from [X,Y]; the first can have any nonzero number of items, whereas the second must
have exactly two items. Note also that X and Y are different datatypesin [X|Y]; X isasingleitem, but Y isa
list of items. So [X|Y] represents an uneven division of alist.

Here are some examples with the previous weekdays and weekends facts.

?- weekdays([ Al L]).
A=nonday, L=[tuesday, wednesday, t hursday, fri day]

?- weekdays([A B, CL]).
A=nonday, B=tuesday, C=wednesday, L=[thursday, fri day]

?- weekends([ A B|L]).
A=sat urday, B=sunday, L=[]

The"[]" isthelist of zero items, the empty list | REFERENCE 2|. .FS | REFERENCE 2| Called nil in the
language Lisp. .FE

Defining some list-processing predicates
Let's write some famous list-processing programs (summarized in Figure 5-1). Programs requiring many lines
of code in conventional programming languages can often be quite short in Prolog because of its declarative

nature. We'll define mostly function predicates. Following the convention of Section 2.9, the function result is
the last argument of their predicate expressions.

First, here's a definition of a predicate that computes the first item of an indefinitely long list:
first([X L], X).

This definition is afact, not a rule--but remember, facts are just rules with no right side. So X stands for any
item, and L stands for any list.

Here's adefinition of the last item of alist;

last ([ X], X).
last ([ X| L], X2) :- last(L, X2).

Thefirst line says that the last item of alist of oneitem isthat item. The second line says the last item of any
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other nonempty list isthe last item of the list formed by removing the first item. Thisis atail-recursive
program with the first line the basis step (simple nonrecursive case) and the second line the induction step
(recursive case). Tail recursion is the standard way to define list-processing predicates in Prolog, with each
recursion chopping one item off alist.

We can usefirst and last just like the predicate definitions in Chapter 4, to work on data we typein. For
instance:

?- last ([ nonday, t uesday, wednesday, t hur sday, fri day], X).
X=fri day

We can also useit on listsin the database by doing a database retrieval first. Suppose we have a database fact:
weekdays( [ nonday, t uesday, wednesday, t hur sday, fri day]).
Then we could find out the last weekday by:

?- weekdays(L), last(L, X).
L=[ nronday, t uesday, wednesday, t hur sday, fri day], X=fri day

As another example of alist-processing definition, consider member (X,L) whichistrueif item X isa
member of list L. We can give the following fact and rule (note the order: the recursive part of a definition
should always come after the nonrecursive, to avoid an infinite loop) | REFERENCE 3|

menber (X, [ X| L]) .
menber (X, [Y|L]) :- menber(XL).

.FS| REFERENCE 3| Recursive list-processing predicate definitions, and many other recursive definitions
too, can be made considerably more efficient by Prolog's built-in "cut" predicate (symbolized by "!"), to be

explained in Section 10.7. For instance, a better version of member for most purposes is. member (X,[X|L]) :-
|

member (X,[Y|L]) :- member (X,L). .FE The fact saysthat X isamember of any list whereit isthe first item;
there's no need to check the rest of the list then. Otherwise, figure out if X isamember of therest of thelist,
and that's the answer. Notice there's no need to give conditions under which member fails, like

menber (X, []) :- 1=2.

Since 1 can never equal 2, thisrule never succeeds. But in Prolog, failure failing when we use arule means the
same thing as no rule at al. So the immediately preceding ruleis completely useless.

We just gave a declarative explanation of the member predicate. For a procedural explanation (though we
emphasize again that thisis not the best way to understand recursive programs), consider the query

?- menber (di ck, [tomdick, harry]).
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Thefirst line of the member definition fails because dick is not tom. So the second line is used, creating a
recursive call

?- menber (di ck, [di ck, harry]).
for which thefirst line succeeds. So the original query gives yes.

The member definition will also work when the first argument is unbound (an output). Then the program
generates members of alist in succession under backtracking, something quite useful for artificial-intelligence
programs. Consider the query:

?- menber (X, [tomdick, harry]).

When the interpreter executes this, the first line of the program can match X=tom, and this binding is printed

out. If we now type a semicolon, we request a different binding, forcing the interpreter to use the second rule.
So thisrecursive call is executed:

?- menber (X, [di ck, harry]).

And for this new query the first line can succeed, giving the result X=dick. If we type another semicolon, welll
be querying

?- menber (X, [harry]).

and we'll get X=harry; and if we type yet another semicolon, we'll be querying
?- menber (X, []).

and welll get no.

Here's apredicate length(L ,N) that computes length N of alist L:

l ength([],0).
length([X]L], N :- length(L,N2), Nis N2 + 1.

Remember, [] represents the empty list, the list with no members. Thefirst line says the empty list has length
zero. The second line says that the length of any other list isjust one more than the length of the list created by
removing the first item. For instance:

?- length([a, b,c,d],N).
N=4
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Here's a predicate max(L ,M) that computes the maximum of alist L of numbers:

max([ X, X).
max([ X L], X) :- max(L,M, X>M
max([ X L], M :- max(L,M, X =< M

Thefirst line says the maximum of alist of one item isthat item. The second line says that the first number in
alist isthe maximum of thelist if it's greater than the maximum for the rest of the list. The third line says the
maximum of alist isthe maximum for all but the first item of the list if neither of the first two rules applies.
For instance:

2- max([3,7,2,6,1],N).
N=7

List-creating predicates

Suppose we want to delete every occurrence of some item from alist, creating a new list. We can do thiswith
apredicate delete of three arguments: (1) the item X we want to get rid of (an input), (2) theinitial list L (an
input), and (3) thefinal list M (an output). And we'll assume that's the only pattern of inputs and outputs we'll
ever use. For instance:

?- delete(b,[b,a,b,b,c], M.
ME| a, c]

To define this, we could write:

delete(X [].,]1]).
delete(X,[X|L],M :- delete(X, L, M.
delete(X, [Y| L], Miew :- not(X=Y), delete(X,L,M, Mewis [Y|M.

But there's a better way to write the last rule: we can move the [Y [M] list to the left side. Thisis good because
(1) theisis unnecessary because |eft sides can also bind variables, and (2) isisn't completely reversible, and
we'd like amore multiway program. So we could use instead:

delete( X, [],[1])-

delete(X, [XIL],M :- delete(X L,M.

delete(X, [Y|L],[YIM) :- not(X=Y), delete(X L, M.

This works the same, even with the third argument unbound, because nothing can be done with the[Y|M] on
the left side until the right side is executed and M is bound. So the construction of [Y|M] remains the |ast
thing done by the third rule.

Y ou may be puzzled why the not(X=Y) in the third line is necessary. We could write
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delete( X, []1,]1).
delete(X, [X|IL],M :- delete(X L,M.
delete(X, [Y|L],[YIM) :- delete(X, L, M.

The delete predicate never fails for itsfirst two arguments bound; one of those three rules must always
succeed. So if the second line fails, the left side must be at fault, and X and Y must be different, right? Yes,
but only the first time through. If we ever backtrack into this delete, we'll be in trouble because backtracking
would use the third rule for some situation in which it used the second rule previously. For instance:

?- delete(b,[a,b,a, b, c],L).
L=[a, a, c] ;

L=[a, a, b, c] ;

L=[a, b,a, b, c] ;

no

So be careful in Prolog programming: just because something works OK for its first answer doesn't mean it
will work OK on backtracking to get new answers.

Next, here's a useful predicate that "appends’ (concatenates) one list to another. It has three arguments: the
first list, the second list, and the combined list.

append([],L,L).
append([ X L1], L2, Lnew) :- append(L1l,L2,L3), Lnewis [X| L3].

Aswith delete, we can rewrite the last rule to eliminate the awkward and undesirable is, moving the [ X|L 3] to
the left side:

append([],L,L).
append([ X L1],L2,[ X]L3]) :- append(L1,L2,L3).

This saysfirst that the anything appended on the empty list isthat thing itself. Otherwise, to append some
nonempty list having first item X to asecond list L 2, append the rest of that first list (without X) to L2, and
then put X in front of that. Study this revised definition carefully; it's a good example of how the style of
Prolog programming differs from the style of most other programming.

Figure 5-2 shows an example using append with the first two arguments bound (inputs) and the third
argument unbound (an output), for the query

?- append([gas,oil],[tires,battery,radiator], Things to check _before trip).

The nested boxes represent the rule invocation environments created with each recursion. The outer one holds
the parameter and local variables for the initial invocation of append. Thisinvocation recursively calsitself,
creating the middle box, with its own distinct variables. Thisinvocation of append in turn recursively calls
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itself, resulting in the inner environment (box) with yet more distinct variables. The processing state at this
point is depicted in the Figure. Now:

1. Thefirst line of append saysto bind its third argument to its value of L,
[tiresbattery,radiator], and the invocation of the inner box succeeds.

2. Returning next to the middle box, [tires,battery,radiator] isthevalue of L3, and its X is ail,
so [X|L 3] is[ail tires,battery,radiator]. So the invocation of the middle box succeeds.

3. Returning to the outer box, [oil tires,battery,radiator] isthe value of itsL 3, soits[X|L 3] is
[gas,oil tires,battery,radiator]. The outer box succeeds.

4. So the original third argument Things to _check before trip isbound to
[gas,oil tires,battery,radiator].

Like the member predicate and many other predicates defined without arithmetic, append will work several
ways. In fact, it will work seven ways (see Figure 5-3). For instance, it will handle the case in which the third
argument is bound (an input) but the first and second arguments are unbound (outputs). Then the first two
arguments are bound to binary partitions (breakings-in-half) of the third argument. So

?- append(L1,L2,[tomdick, harry]).
givesthefollowing if you keep typing a semicolon:

L1=[], L2=[tomdi ck, harry];
Li1=[tom, L2=[dick, harry];
Li1=[tom di ck], L2=[harry];
Li1=[tom di ck, harry], L2=[];
no.

The other rows in Figure 5-3 show other ways append can be used. Basically, we've got seven quite different

programs in one. This comes about from the declarative interpretation of the definition: it describes conditions
that hold when its third argument is the result of appending the first two arguments, not how to do it. Again, it
describes "what" instead of "how".

Combining list predicates
List predicate definitions can refer to other list predicates. For instance, we can use member to define a subset
predicate that determines whether all the members of somelist L1 are members of somelist L2. Hereit is, and

we print member aswell to refresh your memory.

subset ([],L).
subset ([ X| L1],L2] :- nenber (X, L2), subset(L1,L2).
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menber (X, [ X L]) .
menber (X, [Y|L]) :- menber(XL).

We leave a blank line between the rule groups with the same predicate name, following a convention (also
followed in the traffic lights program of Section 4.11). Here's an example use of the program:

?- subset([b,c],[a,c,e,d,Db]).
yes

Here's a program for sorting lists of numbersinto increasing order, insertion sort in particular:

sort([]

1)
sort ([ X|] L1]

,L2) :- sort(L1,L3), insert_itenm(X L3,L2).

insert _item( X [],[X]).
insert _item( X, [Y|L],[XVY|L]) :- X<Y.
insert _item( X, [Y L1],[YIL2]) :- X>=Y, insert_itenm(X L1,L2).

Thefirst argument to sort is an unsorted input list, and the second argument is the output sorted list. The first
argument to insert_item is an input item, the second argument an input list, and the third argument is the
result of inserting that item into that list, an output. For instance:

?- sort([3,2,7,4],L).
L=[ 2, 3, 4, 7]

Redundancy in definitions

Basis conditionsin arecursive definition are simple cases that don't require recursion. We always need at least
one basis condition in arecursion, but we can have more than one. For instance, we could define length of a
list thisway:

length([],0).

length([X],1).

length([ X VY], 2).

length([X Y,ZL],N :- length(L,N2), Nis N2 + 3.
instead of equivalently:

length([],0).

length([X]L],N) :- length(L,N2), Nis N2+1.
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But the extra lines can speed calculation when our lists are very short on the average: we're able to answer
many queries without recursion. Here's asimilar alternative to the member definition of Section 5.5:

menber (X, [ X| L]
menber (X, [ Y, X
menber (X, [ Z, Y|

).
L]).
L]) :- nenber (X L).

Here the second line is redundant, since its case can be covered by a slightly modified third line. But if lists

are often, or the things we're looking for are usually towards the front of the lists, the preceding definition may
be faster than the original definition.

Such modifications are a kind of caching, a concept that occursin many disguisesin artificial intelligence, and
which will reappear in a quite different form in Chapter 6. Caching means asserting unnecessary or redundant
facts to improve efficiency. The ideaisto waste alittle space (the extra facts) in the hope of improving
calculation speed. Caching doesn't always improve speed significantly, so to justify it you first need to do
experiments, or do some mathematical analysis like that we'll do in Section 9.14 and 13.3.

An example: dejargonizing bureaucratese (*)

Natural language (human language) is a major subarea of artificial intelligence research. Lists and list
processing routines are the obvious way to represent and use sentences and languages in Prolog. As an
example, consider acritical technical problem facing the United States today: the translation of bureaucratic
jargon into real English. Bureaucratic organizations typically use their own terminology to make their
accomplishments look alittle less pathetic than they really are. It would be useful to take a sentence of such
bureaucratic jargon, expressed as a Prolog list, and convert it to understandable everyday English. Such a
translation program might be used routinely on government documents.

For instance, "impact” is often misused as averb, asin "The study will impact the department.” When so used,
it can be replaced by the simpler and more standard English word "affect”. Similarly, "adversely impact" and
"negatively impact" can be replaced by "hurt". "Transition" is a'so misused as averb, asin "The project will
transition to phase 3," and can be replaced by "change'. "Evaluate options' and "consider options' can be
changed to "study", and "under advisement" and "under consideration” to "being studied". Y ou can probably
recall many more examples. These substitutions usually but not always have the same meanings, so the

sentence created by applying them should always be carefully double-checked.

It's easy to write a Prolog program for this, once English sentences are represented in Prolog list format. First
we represent the substitution pairs as facts. For example:

substitution([adversely,inpact],[hurt]).
substitution([negatively,inpact],[hurt]).
substitution([inpact],[affect]),
substitution([wll,transition],[w |, change]).
substitution([nust,transition],[nust, change]).
substitution([to,transition],[to, change]).
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substitution([consider, options],[study]).
substitution([eval uate, options],[study]).
substitution([under, advi senent], [ bei ng, studi ed].
substitution([under, consideration],[being, studied].
substitution([expedite],[do]).
substitution([expeditiously],[fast]).
substitution([wll,secure],[wll,close]).
substitution([nust, secure],[mnust, cl ose]).
substitution([prioritize],[rank]).

The first argument contains the original words, and the second argument the words to be substituted. Note that
extrawords in the first argument narrow the applicability of the substitution, but reduce the possibility of
making mistakes.

Next we define a predicate that recurses through the sentence list, like member and delete defined in Sections
5.5 and 5.6 respectively:

dejargoni ze([],[]).

dej argoni ze(L, NL) :- substitution(S, NS), append(S,L2,1L),
append(NS, L2, L3), dejargoni ze(L3, NL).

dejargoni ze([ X| L], [ X| L2]) :- dejargonize(L, L2).

Thefirst line sets the basis condition as the empty list, and the last line recurses through the list. The middle
two lines do the work of substitution. They check through the substitution facts for one whose first argument
matches the front of the list (using the append predicate according to the third line of Figure 5-3, for second
argument unbound), and substitute (using append according to the second line of Figure 5-3, for the third
argument unbound), and recurse on the new list. Here's an example:

?- dej argoni ze
([ we, nust, consi der, options,to,transition, expeditiously],L).
L=[ we, nust, st udy, t o, change, f ast ]

Despite the somewhat frivolous nature of this program, the idea of substituting into strings of wordsis
important in much natural language work, and we'll look some more into it at the end of the next chapter.

Keywords:
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Exercises

5-1. (A,P) Define a Prolog predicate max(X,Y,Z,M) that saysthat M isthe maximum of the three input
numbers X, Y, and Z. Useonly " >" to compare numbers.

5-2. (R,A) A student familiar with Pascal waswriting a compiler in Prolog. Thisrequired trandating an
error code number into an English description, so they wroteruleslikethis:

t ransl at e( Code, Meani ng)
t ransl at e( Code, Meani ng)
t ransl at e( Code, Meani ng)

Code=1, Meaning is integer_overflow.
Code=2, Meaning is division_by zero.
Code=3, Meaning is unknown_identifier.

Thisispoor Prolog programming style. How can it beimproved?

5-3. (P) Writeabetter _dividelike better _add that handles similar casesfor division. Have the program
prevent division by zero.

5-4. Tofigure out a tax amount, you subtract the deductions from the gross and multiply by the tax rate
(expressed as a decimal number lessthan 1). Using the better _add predicate defined in Section 5.3 and
an analogous predicate better _multiply that you define yourself, write a single Prolog rule that can be
used to answer all the following questions by a single query each:

--If my grossis 1,000, my deductions 270, and my tax rate 0.15, what is my tax?
--If my tax was 170 at a tax rate of 0.17, with no deductions, what was my gr 0ss?

--1f my tax was 170 at a tax rate 0.17 and a gross of 1500, what amount of deductionsdid |
take?

--What tax rate would result in atax of 80 on a gross of 1200 with 400 in deductions?

If your Prolog dialect can handle decimal numbers, show your program works correctly for the
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preceding questions.

5-5. (P) (Thisrequiresa Prolog dialect with floating-point numbers.) Define a predicate square(X,Y)
that saysthat its second argument isthe square of itsfirst argument (the result of multiplying the first
argument by itself). Using the built-in var predicate, have it handle each of the four cases of binding of
its arguments:

--if both arguments are bound, it checksthat the second argument isthe square of the
first;

--if the first argument isbound and the second argument unbound, it computesthe square
of thefirst argument;

--if the first argument is unbound and the second argument is bound, it computes an
approximation of thefirst argument within 0.001 by bisection search or some other
iterative method from numerical analysis,

--if both arguments are unbound, it generates all possible pairs of positive integer s and
their squaresstarting with 1.

5-6. (P) (a) Define a new predicate integer _better _add, like better _add but ableto handlethe casein
which itsfirst two arguments are unbound (outputs), finding all pairs of integersthat sum to a bound
(input) integer third argument.

(b) Use part (a) to write a program to gener ate three-by-three magic squaresthat have a given number
as characteristic sum. (A magic squareis a two-dimensional array of integers such that the sum of eight
things--the three columns, the three rows, and the two diagonals--isthe same.)

5-7. Consider thisquery:

a(X Y), not(c(X)), d(XY).

Suppose our Prolog database containsthis, in order:

d(x,y) :- X>1, Y > 1.

a(o,1).

a(o, 2).

a(2,1).
a(MN) :- b(P,Q, b(QP), Mis P+ 1, Nis Q+ 1.

c(0).
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b(3,1).
b(2,1).
b(1,2).
(a) Without using the computer, what isthefirst answer found to the query by a Prolog inter preter?

(b) Without using the computer, what isthe second answer found to the query (when you type a
semicolon after thefirst answer)?

5-8. (R,A) Suppose we have Prolog facts about named eventsin terms of the following three predicates:

start(<event>,<time>), an event started at a particular time
end(<event>,<time>), an event ended at a particular time
duration(<event>,<length>), an event lasted for a particular length of time

We may have one, two, or all three of these facts about some event, and we can't know in advance which
we will have if we have one or two.

(&) Write Prolog rulestoinfer an end time for some event when thereisno end(Event,Time) fact for it,
and to infer a start timewhen thereisno start(Event,Time) fact for it.

(b) Define a new Prolog predicate after (Event1,Event2) which istrue when itsfirst argument Eventl
definitely happened after its second argument Event2.

(c) Define a new Prolog predicate during(Event1,Event2) which istrue when itsfirst argument Eventl
definitely happened whileits second argument Event2 was happening.

(d) Explain wherein a Prolog database of factsthese rules should go for thingsto work right.

5-9. (R,A) Thetransmission of a car contains gearsthat transmit power to the car'swheels. You can
infer the speed and direction of the wheels, given facts about what gear s are connected to what other
gear s and what isdriving them.

Assumegearsarelabeled g1, g2, g3, and so on. Assume the number of teeth on each gear is specified by
factsof theform

t eet h( <gear nane>, <nunber of teeth>).
Assume all rigid connections between gear s on the samerigid shaft are specified by facts of the form

sane_shaft (<gear _nanme_1>, <gear nane_2>).
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Assumethat all meshed (teeth-to-teeth) connections between gear s ar e specified by facts of the form
nmeshed( <gear nanme_1>, <gear _nane_2>).

(&) Wewant to reason about therotational speed and direction of gears. Give a good format for such
factsfor each gear.

(b) Anytimetwo gearsarerigidly attached to the samerigid shaft, their rotational speeds are the same.
Writea Prolog rulethat can infer the rotational speed of one such gear on a shaft from the known
rotational speed of another such gear. Usethe fact format from part (a).

(c) Anytime two gear s are connected or " meshed" the product of the number of teeth and therotational
speed for each gear isthe same, except that one gear rotatesin the opposite direction from the other.
Writea Prolog rulethat can infer the rotational speed of a gear from the rotational speed of a gear
meshed with it, assuming the number of teeth on both gearsisknown. Use the fact format from part (a).

(d) Suppose gear gl hasarotational speed of 5000 rpm in a clockwise direction. Supposeit ison the
same shaft as g2, g2 ismeshed to g3, and g2 is meshed to g4. Suppose gl has 100 teeth, g2 has 30 teeth,
g3 has 60 teeth, and g4 has 90 teeth. Give a Prolog query that will figure out the rotational speed and
direction of gear g4 from a database of these facts. Then show the stepsthat the Prolog inter preter will
take to answer that query. Note: you must write the factswith the correct order of argumentsin order
for your inferencerulesto apply properly to them.

(e) Explain how infinite loops could happen when reasoning about gears, if you weren't careful in
specifying the facts.

(f) Suppose for some arrangement of gears and specified gear speedsyou find gear g8 has a speed of
1200 rpm by one chain of reasoning, and 800 rpm by another chain of reasoning. What does this mean
for the gears?

5-10. (P) Define a predicate convert that does units conver sion for length measurement; for instance, it
convertsa measurement in feet to meters. The convert predicate should take four arguments. a number
(an input), the unitsfor that number (an input), the unitsto which you want to convert (an input), and
theresult number (an output). Handle the following units: meters, decimeters, centimeters, millimeters,
decameters, kilometers, inches, feet, yards, and miles. Hint: don't write a separaterulefor every pair of
possible units, but chain inferences.

5-11. Consider representing maps of highway routesin Prolog. Suppose you don't have much memory
space, so representing squar es of the map as a two-dimensional array is out of the question. I nstead, you
want to storejust infor mation about what towns ar e connected by which highways segments (assume
segments have names and numbers, not unique, like" California 62" ), and distances. Suppose highway
segments arein different counties, states, and countries, and we want to remember which. Suppose we
also storethe different maximum speed limitsfor different states and countries. Assume each routeisin
a single county (you can create imaginary towns on county linesto ensurethis). Assume highway
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segments meet only at towns.
(a) Giveformatsfor thefact predicates you need.
(b) Givearuleor rulesfor inferring the maximum speed limit on aroad.

(c) Givearuleor rulesfor inferring a distance (not necessarily the shortest, that's hard) between two
towns. Don't worry about getting into ainfinite loop; assume the Prolog interpreter is smart enough not
to visit the same town twicein aroute (we'll explain how to do thisin Chapter 10).

(d) SupposethereareR routes (connecting two towns each), C counties, S states, and K countries. How
many facts do you save with theinferencein part (b)? M ake reasonable assumptions if necessary.

(e) Suppose there areR routes (connecting two towns each) and T towns. Approximately how many
factsdo you save with theinferencein part (c)? Perhaps consider different arrangements of towns.
M ake r easonable assumptionsif necessary.

5-12. (P) Define a completely multidirectional inference_distance of three arguments. Itsfirst argument
isakind of the second argument. Itsthird argument isthe number of linking a_kind_of factsthat must
be followed to get from thefirst argument to the second. By " completely multidirectional” we mean
able to handle any pattern of bindings of the arguments. Assumethereareonly a kind_of facts, no
rules, and the factsdon't have any cycles, and thereis only oneroute between any two things. (The
inference distance concept isimportant in psychology, because some psychologists believe that humans
have semantic networksin their heads and that the speed of human reasoning is proportional to the
inference distance.)

5-13. (E) Consider a Prolog definition written to implement a function, in other wordswritten to be
used when all arguments but the last are bound (inputs), which bindsitslast argument to some unique
value. | n abstract mathematical terms, what characteristics must the function have to be easily used
multidirectionally, that iswith last argument bound and other arguments unbound?

5-14. (A,P) (a) Using a single call to append and no other predicates, implement the member predicate.
(Hint: thefifth row of Figure 5-3isclosest to what you need.)

(b) Using a single call to append and no other predicates, implement thelast predicate.

(c) Using just two callsto append and no other predicates, implement a deleteone predicate that
removes a single occurrence of someitem from alist.

(d) Using just two callsto append and no other predicates, implement a before predicate of three
arguments, that succeedsif itsfirst two arguments are both members of itslist third argument, and
wher e thefirst argument item occur s befor e the second argument item.

5-15. (E) Figure5-3ismissing arow for the casein which all variables are unbound. Explain why for
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this case the predicate definition will not work properly.
5-16. Consider the delete predicate defined in the chapter:

delete(X, [],[]).
delete(X, [X|IL],M :- delete(X L,M.
delete(X, [Y|L],[YIM) :- not(X=Y), delete(X L, M.

(a) Supposeyou rewriteit as

delete( X [].,[1).
delete(X, [XIL],M :- delete(X L,M.
delete(X,[Y|L],[YIM) :- delete(X, L, M.

What happens when you query this predicate with second and third arguments bound and fir st
argument unbound?

(b) What happensif you change the second lineto
delete( X, [ X L],L).
and query this predicate with first and second arguments bound and third argument unbound?

5-17. (A) (a) Suppose that Prolog predicate mystery isqueried with itsfirst argument a bound (input)
list and its second argument unbound (an output). Describe what the predicate mystery does, in a
sentence of 20 or less English words. (Hint: try it on samplelists.)

nystery([],[]).
nystery([X].,[X]).
nmystery([ X, Y| L],[X censored|M) :- nystery(L,M.

(b) Most recursive list-processing definitions have only one basis condition. Why does the preceding
definition need two?

5-18. In the language L ogo and other languages with turtle geometry primitives, there are special
commandsto control a plotting pen. The pen has a position (measured in millimetersin a coordinate
system) and a direction it is pointing in the plane of the paper (measured in degrees). Two built-in
predicates manipulate the pen: forward(X) which movesthe pen forward a distance X in the direction it
ispointing, and right(X), which turnsthe pen around X degrees (without moving itslocation) so it
pointsin anew direction. Thisprogram draws spirals, increasing the length it moves forward each step:

spiral (Si de, Angl e, Increnent) :- forward(Side), right(Angle),
Side2 is Side + Increment, spiral (Side2, Angle, |l ncrenent).
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(a) Draw what the query
?- unknown(4).

causesto be drawn. Assumethe pen is pointing north at the start. Indicate the lengths of linesin your
drawing. Hereisthe definition:

unknown(1) :- right(90).
unknown(N) :- Nl is N1, unknown(Nnl), N2 is 5-N,
forward(N2), unknown(Nml).

(b) Draw what the query
?- flake(3).
causesto bedrawn. Again assumethe pen ispointing north at the start. Hereisthe definition:

flake(1l) :- forward(1l).
flake(N) :- NmL is N1, flake(Nm), right(-60), flake(Nml),
right(120), flake(Nnl), right(-60), flake(Nm).

Hint: thisoneistoo complicated to figure out procedurally--reason about the declar ative meaning of the
rules.

5-19. (A) Consider use of the member predicate with both arguments bound, and with the second (list)
argument N itemslong.

(&) How many timesistheruleinvoked when the answer to the query isno?

(b) Suppose the answer to the query isyes and suppose the item being searched for isequally likely to
appear at any position in thelist. How many times on the average will therule be invoked now?

5-20. Consider our "dejargonizing" program. Each substitution of one set of words for another takes
onelineto define. Explain how to compressthis set of substitutions so one line can handle many
substitutions. (Hint: variables can beitemsin lists.)

5-21. (E) What iswrong with the following " proof” that all horses are the same color? " One horseis
obviously the same color asitself. Suppose for some N, every set of N hor sesisthe same color. Then
consider some hor se Snowy, a white hor se, for purposes of argument. Consider the set of N+1 items
formed by including Snowy in an arbitrary set of N horses. Now if we take out some other horse than
Snowy from this set (call him Blacky), we have a set of N hor ses. By the induction assumption, these
horses are all the same color. But Snowy iswhite. Therefore all the other horsesin theoriginal set must
have been white. So put Blacky back in and take out some other hor se (besides Snowy, call him
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Alabaster) to create a new set of N horses. Thisnew set must also be all of the same color, so sinceit
includes Snowy, the color must be white. But Blacky isin the set too, and so must be whitetoo. Hence
every set of N+1 horses must be white. Hence if any set of N horsesisall the same color, any set of N+1
horsesis of the same color. Hence by recursive argument, all hor ses ar e the same color."

5-22. (A,P) Write a modified transitivity rule (for let's say transitivity of a(X,Y)) that can't ever get into
infinite loops when answering a query of theform

?- a(r,s).

Show your program working on some sample data that contains cycles with respect to the a predicate.
(A "cycle" meansa closed loop in the semantic network.) Hint: use an extralist argument.

5-23. (P) Create a Prolog database and query it appropriately to create poems of the following form:
AABCCBDDDDEEB

Here each capital letter standsfor a class of nonsense words that must rhymetogether. B represents one-
syllable words, and the other lettersrepresent two-syllable words. In addition, the poem cannot have
duplicate words. Hereis an example poem:

uga buga ru batta hatta nu fitty pitty witty ditty garrafarratu

It will help to define a predicate different of two argumentsthat says whether two words areidentical.
Present your resulting poem asthevalue of asinglevariable, alist of listsfor which each list isaline of
the poem. Type semicolonsto see what similar poems you get.

Go to book index
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Control structures for rule-based systems

Rule-based systems for artificial intelligence (also called production systems, but that sounds like an
assembly line) can work quite differently from the usual (built-in) way that Prolog interpreters work.
WE'll now discuss some of these ways. The differences are in the control structure or conflict resolution
or inference engine, the way and order in which facts, rules, and parts of rules are used. Choicesin the
order for these things can enormously affect the success and efficiency of arule-based system--Prolog
interpreters aren't always best.

Control structures are somewhat like the algorithms in other parts of computer science. Control
structures, however, are more general and less precisein their effects. Aswe said in Section 4.13,
artificial intelligence programs tend to consist of many small pieces of code, and the control structure
usually serves as a coordinator or manager for all these piecesinstead of trying to impose a sequence on
them all.

The control structure is critical for an important and practical class of rule-based systems. Called rule-
based expert systems, these rule-based systems try to mimic the performance of human experts on
specialized tasks. Their rules are usually more like recommendations than definitions, often like the
traffic lights example of Section 4.11. Rule-based expert systems typically need large numbers of rules
about a problem area or domain in order to approach skilled human performance. Because of their size,
efficiency isimportant, and choice of control structure strongly affects efficiency. We'll frequently have
expert systemsin mind in this and the next two chapters, if not explicitly.

Just like everything else in computer science, there's atradeoff of generality and flexibility against speed
with control structure ideas. The ideas we'll discuss in this chapter can be placed on an
flexibility/efficiency spectrum (see Figure 6-1). Those that are flexible, "high-level", and slow appear at
the top, while those that are inflexible, "low-level”, and fast (compiled control structures) appear at the
bottom.

Backward-chaining control structures

Many control structures impose a single sequential ordering on everything that happens. But sequential
control structures differ in the relative importance they assign to rule order, fact order, and query (goal)
order. The usual Prolog-interpreter control structure described in Chapter 4 puts goal (query) order top
priority, and then treats rule and fact order of equal importance after that, using the database order as a
way of assigning prioritiesto individual rules and facts. Thisis backward chaining or goal-directed
reasoning. It istold something to prove, and it tries to find away, binding variables as necessary. |If
alternative conclusions are possible (as in the traffic lights example in which several actions are
considered until one is found), backwards chaining can try to prove the first, then try the second if the
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first fails, and so on like an "or". Backward chaining is often a good control structure when there are
many more facts than final conclusions (goals).

As an example, consider these rules, labeled with codes for easy reference:

/* RL */ goall :- factl.
/* RR */ goall :- a, b.

/* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

/* RS */ b :- d.

/* R6 */ b :- e.

/* R7 */ c(2) :- not(e).
/[* R8 */ d :- fact2, fact3.
/* RO */ e :- fact2, fact4.

Suppose the goalsin this rule-based system are goal 1 and goal 2(X), and suppose we consider them in
that order. In other words, it's like a query was:

?- goal 1; goal 2(2).

Suppose further that only facts fact2 and fact3 are true. R1 istried first, but fact1 isn't true so it fails.
Next R2 istried, invoking R4 and then R8. R8 succeeds because fact2 and fact3 are both true. So the
subgoal d succeeds, and therefore R4 (and a) fails because of the meaning of not. So finally goal2 is
tried, which invokes R3. Thisinvokes R7, then R9. The latter fails because fact4 isn't true. So R7
succeeds, hence R3 succeeds with X=2, and hence goal2(2) succeeds.

There are several useful enhancements of backward chaining. A simpletrick that can often greatly

improve efficiency isto cache or enter as facts some or al of the conclusions reached. For instance, once
we prove conclusion b with the preceding rules, we could add a b fact to the database. We should put fact

b in front of rulesthat can prove it, so a subsequent query will find it before the rules. The more timesb

isqueried later, the more effort this caching can save. The disadvantage is more facts to search through to

answer questions.

Conclusion caching is ssmple with Prolog: just use the asserta built-in (that is, you don't have to define it)

predicate of one argument, a fact to be asserted. This predicate assertaislike not in that the argument
must be a predicate expression; querying it aways succeeds, but has the side effect of adding that

expression as a new fact to the database, in front of the facts with that same predicate name and rules with

that name on their left side. Like most of Prolog's built-in predicates, asserta alwaysfailson
backtracking: there's no second way you can assert afact. Prolog also has two related built-in predicates:

assertz which caches afact after the last fact or rule in the database having the same predicate name, and

retract which removes (or "un-caches") afact from the database.
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Another trick to improve efficiency of backward chaining is not to require a complete starting database,
but ask for facts as needed--that is, designate virtual facts. For instance, if there's something wrong with a
car's electrical system, you could check for loose wiring. But that's a lot of work, and some wires are hard
to find. We shouldn't require checking wires before running a car program, only if more obvious
problems like a dead battery have been ruled out. Backward chaining works well with virtual facts
because it only queries facts immediately relevant to its conclusions. The control structure we discuss
next, forward chaining, does not have this advantage, but it has some others.

Forward chaining

Often rule-based systems work from just afew facts but are capable of reaching many possible
conclusions. Examples are "sensory" and "diagnosis* expert systems, like those that identify an object
from a description of what you see at a distance, or those that tell you what to do when your car breaks
down from a description of what isn't working. For these, it often makes more sense to start with the facts
and reason to goals (conclusions), what is known as forward chaining or data-directed computation or
modus ponens reasoning.

Asan example, taketherule
a:.- b, c.

and suppose b and ¢ are facts. Then we can conclude ais afact, and add it to the facts we have. Thisis
called modus ponens inference in logic. There's no query, no goals; we just use the facts we know to infer
some new fact. (The built-in predicate asserta can help implement this too; see the next chapter.)

To use modus ponens as the basis of a control structure, take the facts in order. For each fact, find all
rules whose right sides contain a predicate expression that can be matched to it. (We can index predicate
names mentioned on right sides to speed this up.) Now "cross out” the predicate expressions matched in
therules; that is, create new rules like the old rules except without these expressions. But wherever afact
matched the last expression on the right side of some rule, the left side of the rule has been proved a new
fact, after substituting in any bindings made on the right side; so cache that new fact in the database. The
last paragraph gave an example. For another, consider:

a(X,3) :- b(X.
Then if b(20) is afact, modus ponens would conclude a(20,3) is afact.

It matters where we put a new fact among the others, since the facts are pursued in order. Usualy it's
good to put the new fact in front of those not yet considered, a most-recent-fact or focus-of-attention idea.
So the fact just proved will be the next fact examined; the fact list then is much like a stack (last thing
"in" isthefirst thing "out"). This might be good if we want to reach some particular conclusion as fast as
possible. But, on the other hand, if we want to systematically find every conclusion possible from the
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facts, we should put new conclusions at the end of the set of facts; the fact list is then like a queue (last
thing "in" isthe last thing "out").

Any notsin rules require special handling. Since we want to follow the closed-world assumption for
forward chaining too (it's smplest), we want not to mean "it can't be proved". So forward chaining must
first assume all notsto be false, prove all possible facts, and only then consider as true those nots whose
arguments are not now facts. Those nots may then prove new facts with new consequences. (To avoid
such awkwardness, some artificial-intelligence systems let you state certain facts to be false, and welll
discuss how to handle such "unfacts" in Chapter 14, but this creates its own complications.)

Here's the formal algorithm for (pure) forward chaining:
1. Mark all facts as unused.
2. Until no more unused facts remain, pick the first-listed one; call it F. "Pursue” it:

(a) For each rule R that can match F with a predicate expression on its right
side, ignoring nots, and for each such match in the rule (there can be
multiple match locations when variables are involved):

(i) Create anew rulejust like R except with the expression
matching F removed. If variables had to be bound to make the
match, substitute these bindings for the bound variablesin the
rule.

(i) If you've now removed the entire right side of rule R,
you've proved afact: the current left side. Enter that left side
into the list of facts, and mark it "unused”. (The focus-of -
attention approach here puts the new fact in front of other
unused facts.) Eliminate from further consideration all rules
whose left sides are equivaent to (not just matchable to) the
fact proved.

(iif) Otherwise, if there's still some right side remaining, put
the new simplified rulein front of the old rule. Cross out the
old ruleif it is now redundant. It is redundant if the old rule

always succeeds whenever the new rule succeeds, which is
true when no variables were bound to make the match.

(b) Mark F as"used".

3. Create anew fact list consisting of every not expression mentioned in rules whose
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argument does not match any used fact. Mark all these as "unused", and redo step 2.

A forward chaining example

L et's take an example of forward chaining with focus-of-attention handling of new facts. Consider the
same rules used for backward chaining:

/* RL */ goall :- factl.
/* RR */ goall :- a, b.

/[* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

[* RS */ b :- d.

/* R6 */ b :- e.

[* R7 */ ¢c(2) :- not(e).
/[* R8 */ d :- fact2, fact3.
/* RO */ e :- fact2, fact4.

Suppose the rules are taken in the given order; and that as before, only fact2 and fact3 are true, in that
order (see Figure 6-2).

1. We start with fact2, and find the matching predicate expressions R8 and R9. This gives
the new rules

/[* R1I0 */ d :- fact3.
/* R11 */ e :- factA.

Rules R8 and R9 are now redundant since no variables were bound, and R8 and R9 can be
eliminated.

2. No new facts were discovered, so we pursue next fact3. This matches an expression in
R10. So now R10 succeeds, and the new fact d is put in front of any remaining unused
facts (though there aren't any now). R10 can be eliminated.

3. We pursue fact d, and find that rule RS mentionsit in itsright side. (R4 mentions it too,
but as not(d), and we're saving nots for last.) Matching R5 gives the new fact b. Rules RS
and R6 can now be eliminated.

4. Fact b matchesin R2, giving

/* R12 */ goall :- a.
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and rule R2 can be eliminated. The current set of rulesis:

/* RL */ goall :- factl.
/* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

[* R7 */ ¢c(2) :- not(e).
/* R11 */ e :- fact4.

/* R12 */ goall :- a.

5. We have no more facts to pursue. But we're not done yet, since R4 and R7 have nots.

6. Fact d istrue, so rule R4 can't ever succeed. But fact e has not been proved. Hence add
not(e) to the list of facts.

7. This matches the right side of R7. Hence ¢(2) is afact too. Eliminate R7.

8. This matches the only expression on the right side of R3, when X=2, and hence goal 2(2)
isafact. We can't eliminate R3 now because we had to bind a variable to make the match,
and we can still use R3 for other values of X.

9. That's everything we can conclude.

Though Prolog interpreters don't automatically forward chain, it's not hard to teach them--see Section
7.10.

This"pure" forward chaining is rarer in applications than backward chaining. There's a story about a huge
metal robot that came clanking into a bar one day. "I'm a pure-forward-chaining robot, and | can do a
complete analysis of the quality of any liquor-dispensing establishment with a single sample. Please mix
amartini for me, and pour it down the analysis chute in my chest." The bartender did so, and said, "That'll
be eleven dollars. Say, we don't get too many forward-chaining robotsin here." "At your prices I'm not
surprised,” replied the robot.

Hybrid control structures

Different control structure ideas can be combined in hybrid control structures. Hybrids of forward and
backward chaining, compromising on the advantages and disadvantages of both, are often used, The most
common is the rule-cycle hybrid | REFERENCE 1| because it is easy to implement (see Section 7.9). .FS|
REFERENCE 1| The rule-cycle hybrid is often confused with pure forward chaining. .FE

With the rule-cycle hybrid, rules are tried in order as with backward chaining, but each ruleisused in a
forward chaining (modus ponens) way to assert new facts. Therulelist is cycled through repeatedly, first
ignoring any rules with nots. If the conditions on the right side of some rule all match facts (that's facts,
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not just something provable), then the rule succeeds and its left side (with appropriate bindings) is added
to the database as a new fact. When no new rules succeed on a cycle through al of them, rules with nots
are now considered; cycling resumes at the top of the rules, with the not expressions now succeeding if
their arguments aren't now facts. Again we continue until no new rules succeed on a cycle. So with the
rule-cycle hybrid, rule order takes precedence over fact order, but it's different than with backward
chaining. Figure 6-3 summarizes the differences between forward chaining, backward chaining, and the
rule-cycle hybrid.

Here'samore formal algorithm. Warning: it will only work with the restriction that no not(p) occursin
the right side of arule before arule having p asitsleft side, for any p, but that's usually easy to satisfy.

Cycle through the rules repeatedly until no new facts are found on a cycle, ignoring rules
with nots.

For each cycle, consider the rulesin order.

For each rule R, treat itsright side as a query about the facts
(without using any other rules via backward chaining). If R
succeeds, add its left side (with substitution of bindings made)
asafact at the front of thelist of facts. And then eliminate
from further consideration all rules whose left sides are
equivalent to this new fact.

Now repeat the previous step with all the original rules, taking also as true the nots whose
arguments are not facts.

Take our standard example:

/* RL */ goall :- factl.
/* RR */ goall :- a, b.

/[* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

/* RB */ b :- d.

/* R6 */ b :- e.

/* R7 *[ c(2) :- not(e).
/* RB */ d :- fact2, fact3.
/* RO */ e :- fact2, fact4.

With the rule-cycle hybrid when fact2 and fact3 are true (see Figure 6-4):

1. R1, R2, R3, R5 and R6 are tried (we skip R4 and R7 because they have nots). None
succeed because nothing on any right side matches afact that is stated to be true.
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2. R8istried, and it succeeds. Fact d is asserted. Eliminate R8.
3. R9fails.

4. We return to the top of the rule list and start anew cycle. Rules R1 through R3 fail as
before, and R4 isignored.

5. But R5 now succeeds since d isafact. Fact b is asserted. Eliminate R5 and R6.
Now therules are:

/* RL */ goall :- factl.
/* RR */ goall :- a, b.

/* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

/* R7 *[ c(2) :- not(e).
/* RO */ e :- fact2, fact4.

6. R7 and R9 fail (R8 was eliminated). And all the remaining rulesfail on the next cycle.

7. Possibilities are exhausted, so we must now include rules with nots. R1, R2, and R3 fail
as before, and R4 fails because d is afact.

8. R5 and R6 were eliminated, and the not in R7 succeeds because e is not afact. So c(2) is

afact. Eliminate R7.

9. None of R8, R9, R1, and R2 succeed. But R3 succeeds, with X=2, and goal2(2) must be

afact. We can't eliminate R3 because goal 2(2) is more specific than the left side of R3. But

we're done now if we only want to reach one goal.

A different hybrid of forward and backward chaining alternates (time-shares) between forward and
backward chaining steps. It picks afact, and finds what rule right sides mention it; it does backward
chaining in those right sidesto try to establish the |eft side as afact. Then it picks another fact and does
the same thing over again. This hybrid sometimes pays off when neither forward, backward, nor rule-

cycle hybrid chaining works well.

Order variants

Query, fact, and rule ordering isimportant in backward, forward, and rule-cycle hybrid chaining, and

control structures can apply many criteriato do it.
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With backward chaining, predicate expressions in the query can be sorted by priority. Inan "and", the
expressions easiest to process or least likely to succeed can be done first. Sections 13.2 through 13.7
discuss these ideas at length.

With forward chaining, facts can be sorted by priority. The facts most useful (matchable in the right sides
of the most rules) can go first, to help reach interesting conclusions faster. Or the facts most powerful in
reaching conclusions can go first (statistics on queries can be kept for this).

Rule order isimportant to both forward and backward chaining. One common ordering is by specificity.
Specificity doesn't mean how "concrete” the rules are, but whether conditions on the right side of rule 1
are asubset of conditions on the right side of rule 2; or in other words, whether the success of rule 2
means success of rule 1. The specificity ordering puts rules for the most narrowly described situations (or
exceptions) first, then those for less narrow situations, then those still less narrow, and so on up to very
broad default rules. (If the most broadest rules came first, the others would never get a chance to work.)
Since catching subset relationships between rule right sides requires some analysis, a variant is to put the
longest rules first, but this doesn't work quite as well.

Here's an example for rule-cycle-hybrid chaining in which all the rule left sides are goals:

/[* RL */ u :- b.

/[* RR *| v :- cC.

/[* R3 */ w:- b, c, d.
/[* R4 *| x - d, e

/* RS */ y :- b.

/* R6 */ z :- b, d.

A rule-specificity ordering would insist that R3 bein front of R1, R2, R5, and R6, and insist that R6 bein
front of R1 and R5.

There are two problems with specificity ordering. Thefirst is that there are often few such subset
relationships among rules, leaving undecided how to complete the ordering. The second is that the
narrowest rules apply rarely, meaning wasted work if they're first. Chapter 13 will study these issues. But
usually aquick fix is available in the adding of extra not expressions to the broader rules, and putting
those rules first. For instance, for our last example it may be possible to rewrite R1 as

/* RL */ u :- b, not(c), not(d).
and then it doesn't matter where it goes.

Thisis often what the original rules really meant, since we often forget the minor exceptions to rules--
there are just too many. For example, with the rule "if acar won't start and the radio won't play and the
lights don't light, then the battery is dead”, we don't rule out the chance that aliens from outer space have
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nullified al electric fields.

Partitioned control structures

When there are athousand or more rules as in major current expert systems, the rules can interrelate in
many ways, and a bug can be hard to trace. So just like large computer programs, it'sagood ideato
divide rulesinto groups, modules, or partitions for which members of each group have minimal
interactions with members of other groups. Y ou can think of each group as a separate rule-based system
that may occasionally decide to call on another for a separate analysis. An advantage is that the rule
groups can be written and debugged mostly separately. Thisideais called a partitioning or context-
limiting control structure.

Diagnosis expert systems provide good examples. For instance in diagnosis of a malfunctioning car, there
are magjor systems of the car that don't interact much with one another. If electrical devices aren't
working, you can be pretty sure that the problem isin the electrical system; or if the car goes forward but
not backward, you can be pretty sure the problem isin the transmission. So you can put rules for
electrical problemsin one partition, and rules for transmission problems in another, rules for the engine
and fuel system in another, rules for the car body in another, and so on. Y ou'll need one other partition of
rules, a"startup” partition, to look at key evidence and decide which partition appears most relevant to a
problem. And partitions can choose to transfer control to another partition, if say none of their own rules
succeed.

Meta-rules

A general approach can encompass all the control structure ideas so far: specification of control by arule-
based system itself. Meta-rules are just rules whose domain of knowledge is the operation of another rule-
based system; they're akind of heuristic, atopic we'll investigate more thoroughly in Chapter 9. Rules
deciding to load partitions (Section 6.6) are one simple example of meta-rules, but they can do many
other things. Remember that one goal for putting knowledge into computers was to make explicit the
complicated "common-sense" knowledge people have but don't realize they have. How to order rules and
use them is another kind of common-sense knowledge, also formalizable. Here are some example meta-
rules for a backward-chaining-like rule-based system, to control selection of the next rule to try to satisfy
instead of following the database order of rules:

--Prefer the rule that handles the most serious issue.

--Prefer the rule that was written by the most knowledgeable human.

--Prefer the rule that is fastest to execute.

--Prefer the rule that has been used successfully the most times.

--Prefer the rule with the most things in common with the last rule successfully applied.

The big advantage of meta-rulesis their flexibility and modifiability, which allows precise control of a
rule-based system.
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Meta-rules can express things besides rule orderings and partition referrals. Prolog interpreters make the
closed-world assumption or lack-of-knowledge inference: if you can't prove something true, assume it
false. Thismay be unfair for some predicates; a meta-rule could then override normal reasoning. For
instance, a meta-rule could say to use the closed-world assumption only when querying predicates from a
certain list, and to assume afailure means yes otherwise.

Meta-rules seem to be important in human reasoning. People aren't generally systematic enough to use
any of the chaining methods successfully, but instead they rely on problem-specific meta-rules for
deciding what to do next. So to reason more naturally, meta-rules are critical. But figuring out just what
meta-rules people do use is hard.

Decision lattices

WEell now consider some lower-level control structure ideas. decision lattices, concurrency, and and-or-
not lattices. In the terminology of computer science, these are compiled structures. But they're compiled
in adifferent sense than what programming-language "compilers’ produce: they represent a simplifying
first step before the traditional compiler operates. Some people don't consider these compiled structures
truly artificial intelligence, but they're so closely linked to artificial intelligence that we'd better explain
them.

Choosing a good sequence for rules can be important and hard, as we discussed in Section 6.5. But
computers can use storage structures besides sequences (see Appendix C). They can organizerulesin a
hierarchy, what is called a decision lattice or discrimination net. Decision lattices do arestricted but very
efficient kind of reasoning, akind of classification. Theideaisto always specify where to go next in the
computer based on question answers. In other words, akind of finite-state machine. (Sometimes they're
called decision trees, but technically they're lattices since branches that diverge can converge or "grow
back together" later. Any graph without cycles in which this convergence can happen is alattice and not a
tree; cycles wouldn't make much sense here because you'd be asking the same question twice.)

For instance, consider an expert system to diagnose malfunctions of small household appliances (see
Figure 6-5). It isimportant first to distinguish problems within the appliance from problems outside the
appliance. A good way isto ask if the appliance works at all. If it doesn't, ask if it isplugged in. If it isn't,
that isthe problem. If it is, ask if other electric devices nearby (lights, clocks, etc.) work. If they don't, the
problem sounds like a blown fuse. If other appliances definitely work, the problem must be internal to the
faulty appliance. If no such observations can be made (as when there are no electrical appliances nearby),
try plugging the faulty appliance into another outlet to see if the problem reappears.

On the other hand, if the appliance partially works, then it matters what kind of applianceit is. That's
because interpretation of partial-failure clues is quite appliance-dependent, like smoke when the device
has a heating element. As another example, strange noises are more serious in a device with no moving
parts than in a blender. So the next question for a partially-working appliance should classify it.
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So decision lattices impose a classification hierarchy on the universe based on observations. They are
useful for simple expert systems, with several advantages:

1. Implementation is easy: just use pointers (memory references). They can even be
implemented without a computer, as printed text with cross-references.

2. They need not explicitly question a human being: they can examine buffer contents or
sensor readings. Then they can be fast, faster than the chaining methods, because no
matching, binding, or backtracking is needed.

3. They can be designed to ask the absolutely minimal number of questions necessary to
establish conclusions, unlike chaining methods for which such optimization can be
difficult.

But decision lattices have major disadvantages as a compiled or "low-level” control structure;

1. They can't reason properly or efficiently for many applications because they don't easily
permit variables or backtracking.

2. They are difficult to modify and debug, since later questions must assume certain results
to earlier questions.

3. They can't easily reuse query answers since they don't explicitly cache.

4. They may be hard to build, because at each point you try to determine the best question
to ask, something not so easy to judge.

Decision lattices were around long before computers. Expert-system technology only made significant
progress when decision-lattice control structures were mostly abandoned, due to the limitations
mentioned.

Concurrency in control structures

If speed of arule-based system isimportant (as in areal-time application), and multiple processors are
available, a control structure can use concurrency. Usually the processors must share and access the same
database of facts and rules for thisto work well. For a Prolog-style rule-based system, four types of
parallelism for concurrency are identified (see Figure 6-6): (1) partition parallelism, (2) or parallelism,
(3) and parallelism, and (4) variable-matching parallelism. These parallelisms are useful with all three
kinds of chaining.

Partition parallelism means running different partitions of the rules ssmultaneously. Each partition can
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reason separately, though they can explicitly pass conclusions to one another, or cache into a global
database. Thisis good if we've got groups of rules that don't interact much, each group relevant to a
problem.

"And" parallelismis parallelism among expressions "and"ed on the right side of arule or aquery. Usually
it isonly done for the predicate expressions that do not bind variables, the "tests' in the generate-and-test
concept (see Section 3.12). These tests can be done concurrently on separate processors; if any test fails,
the whole "and" should fail, and the other processors should be sent a message to stop work. Otherwise,
the "and" should succeed. "And" parallelism is probably not a good idea when some tests are much harder
to satisfy than others; then the hard tests should go first (see Chapter 13).

"Or" parallelism usually means parallelism between rules with the same | eft-side predicate name. It is
good when there are many such rule groups. Or-parallel rules are sometimes called demons because
they're like little people each independently waiting for a particular set of conditions to be satisfied. "Or"
parallelism can also mean parallel pursuit of factsin forward chaining.

Variable-matching parallelism is parallelism in the argument matching done when matching two
predicate expressions to one another. It makes each match attempt faster, but it doesn't change the usual
sequential examining of the database. It only pays off when you have a significant number of predicates
with two or more arguments.

Concurrency can be simulated on a sequential machine. This gives anew class of control structures, the
sequential reductions of concurrent process descriptions. Thisidea s often associated with the "agenda’
search methods in Chapter 10.

Parallelism is not just an efficiency trick, however. Parallelism is necessary to model many real-world
phenomena. These phenomena are often addressed in object-oriented programming, for which the world
isdivided into clusters of facts representing objects, each with its own partitioned module of rules
governing its behavior. Object-oriented programming is especially useful for smulations. For instance,
objects (and their facts) can represent organismsin an ecosystem, and rule modules for each kind of
organism can govern the behavior of each object. Another application is to modeling components of a
car, where each object represents a part of a car. We'll talk more about object-oriented programming in
Chapter 12. While it emphasizes rule-partition parallelism, it can also involve the other three kinds. For
instance in modeling organisms in an ecosystem, "and" and "or" parallelism can reflect the ability of
organisms to do and think several things simultaneously.

And-or-not lattices

The extreme case of parallelism in rule-based systems is the and-or-not lattice representation of rules, in
which each rule can be thought (or maybe actually is) a hardware logic gate incessantly computing a
certain logical combination of input logic signals representing facts and intermediate conclusions. (It's
sometimes incorrectly called an and-or tree, but like in the decision lattice, the paths can recombine after
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splitting, so it isn't atree necessarily.) "And"sin arule become "and" gates, "or"s become "or" gates, and
"not"s becomes inverter gates.

For instance, for the rules used previoudly:

/* RL */ goall :- factl.
/* RR */ goall :- a, b.

/* R3 */ goal 2(X) :- c(X).
/* R4 */ a :- not(d).

/* RS */ b :- d.

/* R6 */ b :- e.

/* R7 */ c(2) :- not(e).
/[* R8 */ d :- fact2, fact3.
/* RO */ e :- fact2, fact4.

the and-or-not lattice is shown in Figure 6-7. Here we follow the usual conventions for gate shapes (see
Appendix A); facts are the far-left-side "inputs' and goals are the far-right-side "outputs” of thislogic
network. Truth of afact or conclusion is represented by ahigh or "on" voltage aong aline, falsity by a
low or "off" voltage. The output (right-side) voltage of a gate is determined by the logic function of the
voltages representing input(s) on the left side; "and" gates determine alogical "and", "or" gates logical
"or", and inverter gateslogical "not". A given set of facts sets the input voltages for a group of initial
gates, which determine voltages of others, and so on, with everything proceeding in parallel. The and-or-
not lattice is a useful interpretation of rules and facts for the many applications in which order within
"and"s and "or"s doesn't mean anything. It also provides a specification for an integrated-circuit chip that
could do thisvery fast.

This unordered interpretation of rulestakes usto the opposite extreme of the classical Eckert-Mauchly |
REFERENCE 2| model of the computer as a sequential processor. .FS | REFERENCE 2| Sometimes
called the Von Neumann model, but evidence now suggests that Von Neumann had little to do with it.
.FE The main advantage of the and-or-not lattice is processing speed. Another advantage is the
partitionability into modules. we can identify subnetworks and their inputs and outputs, and then build
them easily into large networks. We don't need to worry much about redundancies, gates whose effect is
also accomplished by other gates; they can't Slow computation. But it is true we can't have contradictory
gates or results will be meaningless.

Like decision lattices, and-or-not lattices do have the disadvantage that they can't handle variables well
(you'll notice the example has none). Gates can't directly "bind" variables, though we could indirectly
represent alternative bindings by having multi-position switches on each input to the logic network,
switches that could connect the inputs to one of several lines representing the truths of different facts with
the same predicate name. Then binding means selecting a switch position, and trying possible bindings
means turning the switch and watching the conclusions reached. But thisis awkward, and--especially
when there is more than one variable--can greatly increase the time to get an answer, amain reason for
using and-or-not lattices in the first place.
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Randomness in control structures

A control structure need not be deterministic (that is, always work the same way on the same rules and
facts). Human beings seem to have some randomness in their actions. So a control structure can make
some random choices, especially when alternatives seem of equal worth. For instance, maybein
backward chaining when there are more than ten rules applicable to a situation, choose one at random.
Randomness is most appropriate for rule-based systems trying to model skilled real-time performance by
people. Randomness can prevent infinite loops, because when you choose randomly you can't get stuck in
arut.

Grammars for interpreting languages (*)

Human and computer languages can be handled and processed with grammars. Grammars are rule-based
systems different from those considered so far. For one thing, grammar rules don't deal with facts, but
with strings of words or symbolsin a particular order. All grammar rules are of a particular narrow form:
a statement that one string of words can be substituted for another string of words. Though we didn't say
S0, we saw an example of agrammar in Section 5.9: those substitution pairs, though disguised as facts.
But grammars can also have nonterminal words, words that symbolize grammatical categories and are not
part of the language itself. For instance, the nonterminal “noun” can be substituted for the word "man" or
the word "computer". Nonterminals can also describe sequences of words, like identifying a*noun
phrase" as a determiner followed by an adjective followed by a noun. Linguists have lots of these
categories.

Grammars are essential for getting computers to understand sentences in alanguage, because they make it
possible to determine the structure of a sentence. Used this way, grammars are analogous to the rule-
based systemsin this chapter. The "facts' are the words of a sentence, and the goal is to change that
sentence, by substitutions, into the sentence consisting of the single nonterminal called "sentence”. Such a
process is analogous to forward chaining, and is called bottom-up parsing. It usually involves substituting
shorter sequences of words for longer sequences of words. But you can also work in the opposite
direction from "sentence" to alist of actual language words, analogously to backward chaining, and this
is called top-down parsing. It usually involves substituting longer sequences of words for shorter
sequences of words, and so islikely to require more backtracking than bottom-up parsing, but less work
per backtrack since shorter sequences are searched for. Figure 6-8 shows an example; upward arrows
represent bottom-up parsing, downward arrows top-down.

Hybrids that compromise on the advantages and disadvantages of both bottom-up and top-down parsing
are possible. Grammar rule order isimportant for efficiency: the most likely rules should be tried first.
Parts of the sentence can be processed concurrently. Partitioning can be used to group information about
related words and related parsing rules into modules. Meta-rules can be used for sophisticated control
more like what people do.
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Today most artificial-intelligence work in understanding sentences from human languages (or natural
languages) uses a variation on top-down parsing called augmented transition networks (ATNS). These are
a"smarter" kind of top-down parsing that attaches additional conditions to the parsing rules, so that only
the most "reasonable” rules that apply will be tried. They aso use recursion in a complicated way similar
to the onein Chapter 11.
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Exercises

6-1. (A) Here'sarule-based system:
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[* RL > k(X) - j(X), b(X).

[* R *I f(X) :- a(X), not(g(Xx)).
[* R3 * a(X) :- b(X), i.

I* RA * d :- 1.

/* RS */ d :- e(X), c.

/* R6 */ g(X) :- h, a(Xx).

I* R7 *[ g(X) :- I.

/[* R8 * b(X) :- c.

Assume the goals are f(X), d, and k(X), in that order, and the factsarec, I, e(a@), and j(b), in that order.
Assume no extra caching. Assume we stop when agoal is proved.

(a) Suppose we use pure forward chaining. List the rule invocations, successes, and failures, in order as
they occur. Use the rule numbersto indicate rules.

(b) Now list the rule invocations, successes, and failures for backward chaining, in order.
(c) Does fact order affect which goal is proved first with forward chaining? Why?

(d) Does fact order affect which goal is proved first with backward chaining here? Why?
6-2. Consider this database:

top(X,Y,2) :- bottom(Z, WY, X).

bottom(A B,7,D) :- data(A 0,B), data(A D 1).

data(3,0,1).

data(3,2,1).

List in order thefactsthat are proved by pureforward chaining using focus-of-attention placement
of new facts. Don't stop until everything provableis proved.

6-3. Suppose we ar e doing pure forward chaining on a set of R rules, rules without semicolons
("or"s), nots, arithmetic, and variables. Suppose theserules have L distinct predicate expressions
on the left sides, and Sdistinct predicate expressions, each occurring no morethan M times, on the
right sides. SupposethereareT total predicate expressionson right sides. Supposethereare F
facts, F>0.

(a) What isthe maximum number of locationsimmediately matchableto facts (that is, without
having to prove new facts) on ruleright sides?

(b) What isthe maximum number of new factsthat can be eventually found by forward chaining?
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(c) What would be the effect on your answer to part (a) of allowing one-argument variablesin rules
and facts?

(d) What would be the effect on your answer to part (b) of allowing one-argument variablesin rules
and facts? (A conclusion with an unbound variable still counts as one new fact.)

6-4. Consider the following Prolog database:

a(X) - b(X.
b(X) :- c(X), d(X).
d(X) :- e, f(X).
c(X) - 9(Xx).

a(2).

f(5).

a(5).

e.

(&) What new factsare proved in order by therule-cycle hybrid of forward and backward
chaining? Continue until all possible facts are found.

(b) What new factsare proved in order by the pureform of forward chaining with focus-of-
attention conflict resolution for facts? Continue until all possible facts are found.

6-5. (R,A) Consider thefollowing rules and facts:

a .- v, t.

a .- b, u, not(t).
mX) :- n(X), b.
b :- c.

t :-r, s.

u:- v, r.

r.

V.

C.

n(12).

(a) Suppose we do pure forward chaining with focus-of-attention placement of new facts. Suppose
we want all possible conclusions. List in order the new facts derived from the preceding. Remember
we must save notsfor last.

(b) Suppose we do rule-cycle hybrid chaining with focus-of-attention placement of new facts, saving
notsfor last, and we want all possible conclusions. List in order the new facts derived.
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(c) One problem with rule-cycle hybrid chainingisthat it repeatedly checksthe samerulesagain on
each cycle. Describe a way to know when not to check a rule because of what happened on the last
cycle, besidestheidea of deleting a rule without variables when it succeeds. (Hint: using thisidea
you only need check ninerulestotal for the preceding rules and facts.)

6-6. (E) Consider a variant of therule-cycle hybrid that only cyclesthrough therulesonce. How is
thislike an assembly linein a factory?

6-7. (A) Suppose we are doing rule-cycle hybrid chaining on R rules, ruleswithout variables and
nots. SupposethereareL distinct predicate names on ruleleft sides, and S distinct predicate names
onruleright sidesout of T total predicate nameson right sides. Supposethere are F facts, F>0.
What isthe maximum number of cycles needed to prove everything that can be proved?

6-8. (A,H) Reasoning about rules and factswritten in English instead of Prolog can betricky, and
you must be careful. Consider the following rule-based system for actions of a small reconnaissance
robot. Suppose thefollowing factsaretrue, in thisorder:

F1: Thereisan object with branchesto theright of you.

F2: Thisobject is 2 feet tall.

F3: Thisobject occupies 20 cubic feet.

F4. Thisobject isstationary.

F5: Another object ismoving towards you.

F6: You hear speech from that object. (Assume speech isnot aloud noise.)

Assume all other facts mentioned in rules are false. Assume any new facts, when added, will be put
at thefront of thelist of facts. Assumetherule-based system can result in the following actions, in
thisorder:

Al: Turn around.

A2: Stop and wait.

A3: Turn towards something.

A4: Move a short distance forward.
AS5: Turn 20 degreesright.

A6: Move along distance forward.

Herearetherules

R1: If you hear aloud noisein front of you, then turn around and move along
distance.

R2: If you want to hide, and thereis a bush near by, then turn towardsthe bush, and
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move a short distance.

R3: If you want to hide, and are beneath a bush, then stop and wait.

R4 If an object is moving towards you, and it isa person or vehicle, then hide.
R5: If an object ismoving, and it isan animal, then stop and wait.

R6: If an object isan obstacle and you are moving, and the object is blocking your
path, then turn right 20 degrees, and move a short distance.

R7: Moveforward along distance. [noticeno " if" part here]

R8: If an object haslong branches, and the branches are moving, and it does not have
wheels, then it isan animal.

R9: If an object makesirregular noises, then it isan animal.

R10: If an object makesregular noises, and it ismoving, it isa vehicle.

R11: If an object haswheels, then it isa vehicle.

R12: If an object is stationary, and occupies morethan 1 cubic foot, it isan obstacle.
R13: If an obstacle has branches, and islessthan 3 feet tall, it isa bush.

R14: If an obstacle has branches, and ismorethan 3 feet tall, itisatree.

R15: If an obstacle has no branches, it isarock.

R16: If an animal hasfour branchesin two pairs, and one pair supportsthe animal, it
ISa person.

R17: If an animal speaks, it isa person.

(a) List in order theruleinvocations, successes, and failureswith backward chaining. Assume
conflict resolution based on therule order given. Assume caching of proved facts, so once
something is concluded it need never befigured out again.

(b) List in order therulesinvoked with forward chaining, ignoring rule R7. Again, takerulesin the
order given,
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(c) Give adifferent kind of conflict resolution that would work well for thisrule-based system.

6-9. (A) A rule-based system ismonotonic if anything that can be concluded at one time can be
concluded at any later time. Consider a consistent (that is, non-self-contradictory) " pure”
backwar d-chaining rule-based system, one that doesn't use asserta or retract or any built-in
predicates besides not. Such a system is necessarily monotonic.

(a) Suppose the system is partitioned into modules whose rules cannot " see" therulesof other
modules until those modules ar e specifically loaded. Must the new scheme be monotonic?

(b) Suppose we cache intermediate and final conclusionsreached by the system, using asserta. Must
the new scheme be monotonic?

(c) Suppose we add toright sides of rulesin the system asserta predicate expressions with arbitrary
arguments. Must the new scheme be monotonic?

6-10. (E) (a) Despite their similar names, decision lattices and and-or-not lattices are quite different
things. List their major differences.

(b) List their major similarities.
6-11. Consider the following rule-based system for self-diagnosis and treatment of colds and flu:

A. To deep, go to bedroom.

B. Todrink fluids, go to kitchen.

C. Todrink fluids, go to bathroom.

D. Totake temperature, go to bathroom.

E. Totakeaspirin, go to bathroom.

F. Totelephone, go to living room.

G. Totelephone, go to kitchen.

H. If feel headache or nasal congestion, then feel sick.
|. 1f feel sick, then take temperature.

J. If havefever, then take aspirin.

K. If havefever, then call boss.

L. If havefever, then go to bed.

M. If have nasal congestion or fever, then drink fluids.

() Order therulesin a good way. Show how backward chaining would work applied to the
circumstance when you wake up with a headache, nasal congestion, and a fever. (Usetheletter in
front of each ruletoidentify it.)

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap6.html (21 of 24) [23/04/2002 17:38:50]



http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap6.html

(b) Suggest a fundamentally different control structurethan the preceding, one good for this
problem. (Find a general control structurethat could work in many daily-living rule-based
systems, not just this problem.) Show how it would work on thefirst eight rules applied to the same
situation.

6-12. (R,A) Consider using arule-based system asthe brainsof a" smart house", a house that
automatically does a lot of thingsthat people do for themselvesin other houses. Assumethe smart
house can control power to all the electrical sockets, so it can turn lights, heat and appliances on
and off at programmed times. The smart house can also monitor many different kinds of sensors--
for instance, light sensorsto turn off outside lights during the daytime, infared sensorsto detect
when people arein aroom, audio sensor sto detect unusual noises, and contact sensorsto detect
window openings (as by a burglar). Sensors permit flexible, unprogrammed action, like sounding a
burglar alarm in the master bedroom only if someoneisthere, or turning off appliances when they
seem to have been left on accidentally and no oneisin theroom anymore. Priorities could be
established, so routine activitieswon't be allowed when sensorssay afireis progress. Assumethe
rule-based system isinvoked repeatedly to check for new conditions.

(8) Which isbetter for thisproblem, backward chaining or forward chaining? Why?
(b) I'scaching a good idea? Why? If so, how would it work?

(c) Arevirtual factsa good idea? Why? If so, how would it work?

(d) Isrule partitioning a good idea? Why? If so, how would it work?

(e) Aredecision latticesa good idea? Why? If so, how would they work?

(f) Are and-or-not latticesimplemented on integrated circuits a good idea? Why? I f so, how would
they work?

6-13. On the popular fictitioustelevision show The Citizenry's Courtroom, Judge Wimpner hears
small-claims cases and makes monetary awards of varying amounts to the plaintiff. But the award is
misleading because the plaintiff and defendant are also paid for their appearance on the program, as one
will discover on reading the small print of a disclaimer flashed on the screen for a second during the
closing credits. The plaintiff is given 25 dollars plus the amount of the award plus half of a pool. The
defendant is given 25 dollars plus the other half of the pool. The pool is zero if the amount of the award is
500 dollars or more, otherwise the difference between 500 dollars and the amount of the award.

(a) Suppose the award amount is represented in Prolog as a fact with predicate name award and one
argument representing the amount of the award in dollars. Write three Prolog rules representing the stated
calculations necessary for the plaintiff's amount, the defendant's amount, and the pool amount. Don't
simplify; represent exactly what was stated.
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(b) Now "compile" the three preceding rulesinto two rules for the plaintiff amount and the defendant
amount. Refer to the award amount only once in each rule.

(c) Discuss what is needed to do this compilation for any set of rulesinvolving arithmetic. Will afew
simpletricksdo it, or isalarge rule-based expert system of its own necessary?

(d) What are the disadvantages of this form of compilation?
(e) Compare and contrast this kind of compilation with and-or-not lattices.

6-14. (E) Occam's Razor isthe principle that when severa alternative explanations are possible for
something, you should pick the simplest one. Suppose we try to apply Occam'’s Razor to arule-based
system in which the left sides of rules represent explanations of phenomena.

(a) Which of the termsin Figure 6-1 best describes Occam's Razor?
(b) Why would it be very difficult to apply Occam's Razor to a practical problem?

6-15. (E) Compare and contrast the control structures discussed in this chapter with control of activities
(by directive) in bureaucracies.

6-16. (P) Write a Prolog program to drive a car. Assume the following sensor facts are known to you, as
"data':

S1: you are traveling below the speed limt

S2: you are traveling at the speed limt

S3: you are traveling above the speed limt

$4: you are on a two-|ane road

S5: you are on a four-lane road

S6: you see an intersection comng up

S7: a car is less than 100 neters in front of you

S8: the road changes fromtwo-lane to four-|lane shortly

S9: the road will change fromfour-lane to two-1ane shortly
S10: the brake lights of the car in front of you are on
S11: you are getting closer to the car in front of you

S12: you are passing another car going in the sane direction

Assume the only actions are

Al: speed up
A2: sl ow down
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A3: maintain speed
Ad: pass a car in front of you (or keep passing one you' re passing)

Here are examples of what you want the program to do. (These are not good rules--they're too specific.)

S2,$4, S6: sl ow down (A2)

S2, S5, S8, S10: sl ow down ( A2)
S1, S5, S11: pass (A4)

S1, S5: speed up (Al)

S3, 34, S7: sl ow down (A2)

Write a Prolog program that decides what to do for every possible combination of the sensor facts. (Since
there are 12 kinds, you must handle |2 sup 12|, or 4096 different situations). Assume your program is
called every second to decide what to do that second. Choose a good control structure, and discuss
(justify) your ordering of rules. Try to drive safely.

6-17. (E) Sometimes the ideas of science fiction writers seem pretty wild, but sometimes the ideas that
seem wild really aren't when you think about them a bit.

(@) In Camp Concentration by Thomas Disch (1968), it's suggested that a disease that rearranges nerve
patterns in the human brain could cause people to become alot smarter, more able to reason and make
inferences. Why is this not reasonable based on the assumption that people reason using the methods of
this chapter? Suggest a small change to ideas from this chapter that would permit this phenomenon.

(b) In Brain Wave by Poul Anderson (1954), it's suggested that a small increase in speed of the nerve
impulses in the human brain could lead to a much larger increase in the speed at which humans reason
and make inferences. Why is this not reasonable based on the assumption that people reason using the
methods of this chapter? Give a small change to ideas from this chapter that permit this phenomenon.

Go to book index
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Implementation of rule-based systems

Let's examine how different control structures for rule-based systems can be implemented in Prolog. WEelll
cover backward chaining, rule-cycle hybrid chaining, forward chaining, input and output routines, meta-rules,
and decision lattices. Thiswill mean alot of details; the last section of this chapter brings together the key
Prolog code.

Implementing backward chaining

Though Prolog is designed for backward chaining, there are many details for an implementer of a backward-
chaining rule-based system to worry about when using Prolog, especially when the rule-based system islarge.
The traffic lights program in Section 4.11 was simple because traffic laws are supposed to be ssmple, so even
people unenlightened enough never to have taken an artificia intelligence course can understand them. Many
rule-based expert systems can't be so nice, like those that diagnose and fix hard problems. Such rule-based
systems are often called expert systems, because they automate the role of human experts. We'll introduce some
general-purpose programming aids for expert systems in this chapter.

The goal of most expert systems is to reach adiagnosis, which we'll assume is obtained by typing the query
?- di agnosi s(X).

So what is X? It should describe a situation. We could connect words with underscores as before, but there's an
aternative: we can put single quotation marks (apostrophes) around a string of words to force treatment of it as
aunit. That is, acharacter string. An advantage of character strings is that they can start with capital |etters and
contain periods and commas, while words can't.

Here are some example diagnosis rules for an expert system:

di agnosi s(' fuse blown') :- doesnt_work, all _|ights out.
di agnosi s(' fuse blown') :- noise(pop).
di agnosi s(' break in cord') :- doesnt_work, cord frayed.

Of course we must define those right-side predicates.

Implementing virtual facts in caching

One problem is those rules require advance entry of facts (often, many facts) so that rule right sides can work
properly. Aswe mentioned in the last chapter, virtual facts (facts demanded only when needed) are asimple
improvement. A good way to get them is to define afunction predicate ask of two bound arguments. The first
argument is an input, a string containing question text to be typed out on the terminal, and the second argument
IS an output, avariable to be bound to the question's answer that the user types.
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ask(QA) :- wite(Q, wite('?"), read(A), nl.

Herewrite, read, and nl are Prolog predicates built-in in most implementations (see Appendix D); write prints
its argument on the terminal, read reads something typed by the user and binds that something to the variable
that isthe read's argument, and nl sends a carriage return to the terminal.

Now we never want to ask a user the same question twice; we should cache answers so we can reuse them. It's
easy to add this feature to the ask predicate. We just use the asserta built-in predicate introduced in Section 6.1,
which takes a fact as argument and adds it to the Prolog database. Using it, conclusions can be added to the
database as they are discovered. We can stick the asserta at the end of the definition of the ask predicate:

ask(QA) - wite(Q, wite('?"), read(A, nl, asserta(ask(Q A)).

Then if the same question is asked again, the fact will be used to answer it instead of thisrule. Thisworks
because facts put in the database with asserta are put in front of all other facts and rules with the same first
predicate name. Here's an example of the use of ask:

di agnosi s(' fuse blown') :- ask('Does the device work at all', no),
ask(Are the lights in the house off',yes).

This says to diagnose that the fuse is blown if (1) the user answers no when asked whether the device works at
all, and (2) the user answers yes when asked whether al the lightsin the house are off.

Y ou should carefully phrase the questions to be issued by a rule-based system. In particular, avoid pronouns and
other indirect references to things, since rules and questions may be invoked in hard-to-predict orders.
Generally, though there are exceptions, phrase questions so a yes answer means unusual things are going on,
while a no means things are normal. For instance, after "Are the lights in the house off?', don't ask "Isthe fuse
OK?' but "Isthe fuse blown?'. And be consistent in phrasing questions. After that question "Arethelightsin
the house of f?", ask "Does the fuse look blown?" in preference to than "The fuse looks blown doesn't it?", to
maintain the same verb-noun-adjective order.

Input coding

We could implement a big expert system thisway, with diagnosis rules having ask predicates on their right
sides. But this can require unnecessary code repetition. So two important coding tricks are used in large rule-
based systems. coding of input (answers) and coding of output (questions and diagnoses).

Input coding groups user answers into categories. An important case is questions with only yes or no answers,
expert systems often to rely on them for simplicity. We can define two new predicates affir mative and
negative, which say whether aword the user typed is a positive or a negative answer respectively:

affirmati ve(yes).
affirmative(y).
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affirmati ve(ye).
affirmative(right).
affirmati ve(ok).
affirmati ve(uhhuh).
negati ve(no).
negative(n).

negati ve(not).

negati ve(never).
negati ve(i npossi bl e).
negati ve( haha).

Then we can define a predicate askif of one input argument. It will be just like ask except it will have only one
argument, the question, and it will succeed if that question is answered affirmatively and fail if the question is
answered negatively. We can also fix it so that if an answer is neither positive nor negative (in other words, it is
unclear), we will complain and ask for another answer.

askif(Q :- ask(QA), positive_answer(A).

positive_answer (A) :- affirmative(A).

positive_answer (Qode, A) :- not(negative(A)), not(affirmative(A)),
wite('Please answer yes or no.'), read(A2),
retract (asked(Qode, A)), asserta(asked(Qode, A2)),
affirmati ve( A2).

We can aso define:
askifnot(Q :- not(askif(Q).
which saves some parentheses.

Users may not always understand a question. We can let them type a ? instead of an answer, give them some
explanatory text, and provide them another chance to answer:

ask(Q A :- asked(QA).

ask(Q A :- not(asked(QA)), wite(Q, wite('? '), read(A2),
ask2(Q A2, A .

ask2(Q'?' A :- explain(Q, ask(QA).

ask2(Q A'/A :- not(A="7?"), nl, asserta(asked(Q A)).

where explain facts store explanatory text. Minor humanizing touches such as these can be immensely
Important to user satisfaction, while imposing little on the programmer.

Output coding

Another useful trick is to code questions, so we need not repeat their text at each mention in the rules. Codes for
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guestions also make rules easier to read, and help prevent mistakes because it's easy to err in typing along
string of text (and with caching, every dlightly different question is asked and cached separately). For thiswe
can use a predicate questioncode of two arguments, a code word and a text string for the corresponding
question. Here's an example from appliance diagnosis:

di agnosi s(' fuse blown') :- askif(device_dead), askif(lights_out).
di agnosi s(' fuse blown') :- askif(hear _pop).
di agnosi s(' break in cord') :- askif(device dead),

askif(cord frayed).
gquesti oncode(devi ce_dead, ' Does the device refuse to do anything').
questioncode(lights_out,
"Do all the lights in the house seemto be off').
questi oncode(hear pop, ' Did you hear a sound |like a pop').
questi oncode(cord_frayed,
' Does the outer covering of the cord appear to be comng apart').

To handle this, we must redefine ask:
ask(Qode, A) :- asked(Qode, A).
ask(Qode, A) :- not(asked(Qode, A)), questioncode(ode, Q,
wite(Q, wite('? '), read(A2), ask2(Q Qcode, A2, A).
ask2(Q code,'?",A) :- explain(Qode), ask(Qode, A).
ask2(Q Qcode, A/A) :- not(A="7?"), asserta(asked(Qode, A)).
A further refinement isto handle a class of related questions together. We can do this by giving arguments to
output codes, as for instance using hear (X) to represent a question about hearing a sound X. Then to make the
query we need string concatenation, something unfortunately not available in most Prolog dialects. But thereis
a simple shortcut to concatenation by writing a questioncode rule instead of afact, that types extrawords
before succeeding:
questioncode(hear(X),X) :- wite('D d you hear a sound like a ').
So to ask if the user heard a pop sound you use:
aski f (hear (pop)).
which prints on the terminal as:
Did you hear a sound |like a pop ?
Y et another coding trick isto code diagnoses. Thisisn't as useful as question coding, but hel ps when diagnoses

are provable in many different ways. Diagnosis coding requires a new top-level predicate that users must query
instead of diagnosis, as:
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coded_di agnosi s(D) :- diagnosis(X), diagnosis_code(X D).
For instance, we could use:

di agnosi s(fuse) :- ask('Does the device work at all', no),
ask(Are the lights in the house off',yes).
di agnosi s_code(fuse, ' Fuse bl own').

Then we could get this behavior:

?- coded_di agnosi s(X).

Does the device work at all? no.

Are the lights in the house off? yes.
X=Fuse bl own

Intermediate predicates

Building expert systems is straightforward when there are ten to a hundred rules, each with one to three
expressions on the right side. But it can get confusing when, asin atypical expert system today, there are
thousands of rules averaging ten expressions per right side. It just gets too difficult to keep track of all the
symbols used, and to determine everything necessary for each rule. The solution isto frequently use
intermediate predicates, predicates that occur on both the left and right sides of rules. Intermediate predicates
can represent important simplifying generalizations about groups of facts. Viewing expert-system predicates as
ahierarchy with diagnoses or final conclusions at the top and asked questions at the bottom, intermediate
predicates are everything in between. Much of the intelligence and sophistication of expert systems can come
from a good choice of intermediate predicates to reduce redundancy and simplify rules.

A useful intermediate predicate with appliance diagnosisis power _problem, a predicate that istrueif the
appliance is not getting any electricity for itsinnards. It's useful because appropriate diagnoses when it istrue
are quite different from those when it is false: a non-power problem must be in the deviceitself and can't bein
the cord or external fuse. So power _problem can go into many rules, typicaly early in the right side of the rule
to filter out inappropriate rule use. But power_problem clearly is an intermediate predicate, not afact we can
establish from a single question, because it has many different symptoms. And some symptoms are very strong,
as when all the lights in the house went off when you have tried to turn on the device, or when the device
stopped working when you moved its frayed cord slightly.

Generally speaking, intermediate predicates are needed for any important phenomenathat aren't diagnoses.
Here are some more ideas for intermediate predicates in appliance diagnosis:

--whether the problem is mechanical;

--whether the problem isin a heating element;

--whether the appliance has had similar problems before;

--whether you can improve things by adjusting the controls or buttons;
--whether danger of electrocution is present;
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--whether anything unusual was done to the appliance lately (like being dropped or having liquids
spilled on it);

--how much troubleshooting expertise the user has (note that intermediate predicates can have
arguments).

I ntermediate-predi cate expressions won't be arguments to askifs, since they don't directly query a user. Caching
Isagood idea with intermediate predicates, even more so than caching of query answers (as we did with the ask
predicate). A single intermediate-predicate fact can summarize many questions, and caching it saves having to
ask al those questions over again. Nevertheless, caching of intermediate-predicate conclusions should not
necessarily be automatic, asit only makes sense when aresult might be reused.

An example program

Let's put together the ideas we've introduced in this chapter in alarger rule-based system for the diagnosis of
malfunctions in small household appliances. Figure 7-1 shows some of the terminology, and Figure 7-2 gives
the predicate hierarchy. We list rulesin three groups: diagnosis (top-level) rules, intermediate predicate rules,
and question-decoding rules. To get a diagnosis from this program, query diagnosis(X). Typing a semicolon
will then give you an dternative diagnosis, if any; and so on. So if several things are wrong with the appliance,
the program will eventually find them all.

/* Top-1|evel diagnosis rules */

di agnosi s(' fuse blown') :- power_problem askif(lights out).

di agnosi s(' fuse blown') :- power_problem askif(hear(pop)).

di agnosi s(' break in cord') :- power_problem askif(cord frayed).

di agnosi s('short in cord') :- diagnosis('fuse blown'),
askif(cord frayed).

di agnosi s(' device not turned on') :- power_problem

klutz _user, askif(has('an on-off switch or control')),
aski f (devi ce_on).

di agnosi s('cord not in socket properly') :- power_problem
klutz _user, askif(just _plugged), askif(in_socket).

di agnosi s(' foreign matter caught on heating elenent') :-
heati ng_el ement, not (power problem, askif(snell _snoke).

di agnosi s(' appliance wet--dry it out and try again') :-
power problem klutz user, askif(liquids).

di agnosi s(' controls adjusted inproperly') :- klutz_ user,
aski f (has(' knobs, switches, or other controls')).
di agnosis('kick it, then try it again') :- nechanical problem

di agnosis('throw it out and get a new one') :-
not (power problem, askif(hear('weird noise')).
di agnosis('throw it out and get a new one').

/* Definitions of internmediate predicates */
power problem:- askif(device dead), askif(has(knobs)),
aski f (knobs_do_sonet hi ng).
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power problem:- askif(device dead), askif(snell_ snoke).
kl ut z_user :- askifnot(handyperson).
klutz user :- askifnot(famliar_appliance).
mechani cal _problem :- askif(hear('weird noise')),

aski f (has(' noving parts')).
heating_el ement :- askif(heats).
heating_el ement :- askif(powerful).

/* Question decoding */
guesti oncode(devi ce_dead, ' Does the device refuse to do anything').
guesti oncode( knobs_do_sonet hi ng,

' Does changing the switch positions or turning

t he knobs change anything').
questi oncode(li ghts_out,

"Do all the lights in the house seemto be off').
questi oncode(cord_frayed,

'Does the outer covering of the cord appear to be com ng apart').
guest i oncode( handyperson,' Are you good at fixing things').
qguestioncode(fam |iar_appl i ance,

"Are you famliar with how this appliance works').
guestioncode(device on,'ls the OV OFF switch set to ON).
questioncode(just _plugged,'Did you just plug the appliance in').
questioncode(in_socket,'ls the cord firmy plugged into the socket').
questi oncode(snel | _snoke,' Do you snell snoke').
questi oncode(l i qui ds,

'Have any liquids spilled on the appliance just now ).
questi oncode( heats, ' Does the appliance heat things').
guesti oncode(powerful,' Does the appliance require a |ot of power').
guestioncode(has(X),X) :- wite(' Does the appliance have').
qguestioncode(hear(X),X) :- wite('D d you hear a ').

Here we use variables inside question codes for questions about components and sounds heard. We al'so use a
subdiagnosis (‘fuse blown’) as input to another diagnosis, a useful trick.

Running the example program

Here's an actual run of this program (which requires definitions of askif and other predicates given earlier in
this chapter). Note the same diagnosis is repeated when there are different ways to proveiit.

?- di agnosi s(X).

Does the device refuse to do anything? yes.

Do all the lights in the house seemto be of f? no.
Does the appliance have knobs or switches? yes.
Does changing the switch positions or turning

t he knobs change anyt hi ng? no.
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Do you snell snoke? yes.

Does the appliance heat things? no.

Does the appliance require a | ot of power? no.
Did you hear a pop? yes.

X=Fuse bl own;

X=Fuse bl own;

X=Fuse bl own;

Are you good at fixing things? no.

Does the appliance have an on-off swtch or control ? yes.
s the OV OFF switch set to ON? no.

X=Devi ce not turned on;

Are you famliar with how this appliance works? no.
X=Devi ce not turned on;
X=Devi ce not turned on;
X=Devi ce not turned on;
X=Devi ce not turned on;

X=Devi ce not turned on;

Did you just plug the appliance in? yes.
Is the cord firmy plugged into the socket? no.

X=Cord not in socket properly;
X=Cord not in socket properly;
X=Cord not in socket properly;
X=Cord not in socket properly;
X=Cord not in socket properly;

X=Cord not in socket properly;

Have any |liquids spilled on the appliance just now? maybe.
Pl ease type yes or no. no.

X=Control s adjusted inproperly;
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X=Control s adjusted inproperly;
Did you hear a weird noi se? no.

X=Throw it out and get a new one;

no
?- halt.

Partitioned rule-based systems

Intermediate predicates group related rules together, but they are only a conceptual grouping, more ahelp to
understanding and debugging programs. A stronger way of grouping is putting rules into partitions that can't
"see" one another. Thisis easy to do with Prolog by putting rules in separate files and only loading the files you
need into the database. Loading is done with the consult built-in predicate in Prolog, a predicate of one
argument which is the name of thefileto load. So if therule

a:- b, c.

Is used for backward chaining, and we want whenever it succeeds for the file "more" to be loaded, we should
rewriteit as

a .- b, c, consult(nore).
Like most built-in predicates, consult always fails on backtracking since there's only one way to load afile.

Often one partition is designated the "starting” partition, loaded automatically when the rule-based system
begins. It then decides which other partitions to load and invoke. If aloaded partition later decides it's not
relevant (as when none of itsrulesfire), it can itself load another partition and start that one running.

Implementing the rule-cycle hybrid

Prolog's features make backward chaining easy. But it's also a general -purpose programming language, and can
implement quite different control structures.

First consider the rule-cycle hybrid of backward and forward chaining, easier to implement than pure forward
chaining and hence used in many simple expert systems. It can be done by writing each rulein anew form, a
transformation of each backward chaining rule:

1. "and" anew asserta on the right end of the right side of the rule, whose argument is the left
side of therule;

2. "and" anew not on the left end of the right side of the rule, with the same argument;
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3. then replace the left side of therule by r (first renaming any r predicates aready in the rules).

So these backward chaining rules:

a .- b.

c .- d, e f.

become:

r .- not(a), b, asserta(a).

r .- not(c), d, e, f, asserta(c).

And two sample rules from the appliance diagnosis program:

di agnosi s(' fuse blown') :- power_problem askif(lights_out).
power problem:- askif(device dead), askif(has(knobs)),
aski f (knobs_do_sonet hi ng) .

become:

r :- not(diagnosis('fuse blown')), power problem askif(lights out),
asserta(di agnosi s(' fuse blown')).

r .- not(power_problen), askif(device dead), askif(has(knobs)),
aski f (knobs_do_sonet hi ng), asserta(power _problem.

(Well discuss later how to convert automatically.) So we replace our old rules with new rules whose only effect
Is caching of particular conclusions. Note that these new rules never call on other rules, even if there are
intermediate predicates, because r isthe only left side (since we made sure the predicate r doesn't occur in the
rule-based system). We'll assume for now that no predicate expressions in the original rules contain nots, since
they introduce complications. If we really need negatives, we can define fact predicates that stand for the
opposite of other fact predicates.

Now we must cycle through the rules; that is, consider each rule in order, and go back to the first when we
finish the last. Within each pass, we can force the Prolog interpreter to repeatedly backtrack to aquery of r. A
simpleway is

?-r, 1=2.

Since the = can never be true, the interpreter will keep trying r rules, regardless of whether they succeed or fail.
Eventualy it will run out of al r rules and fail. Actualy, there's a built-in Prolog predicate called fail that has
exactly the same effect as 1=2, so we can say equivalently

?-r, fail.
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To give us ahandle on this code, let's give it a name:
one_cycle :- r, fail.

To get the Prolog interpreter to repeat indefinitely a cycle through the rules, we might think that we could do the
same fail trick, like

hybrid :- one_cycle, fail.

But thiswon't work because one_cycle won't ever return to the top of thelist of rules. And one_cycle itself
never succeeds, so the fail is useless. We could try

hybrid :- not(one_cycle), fail.

which answers the second objection but not the first: we need each call to one_cycle to be afresh call. That
suggests recursion:

hybrid :- done.
hybrid :- not(one_cycle), hybrid.

The doneis a stopping condition that must be defined by the builder of the rule-based system. For diagnosis
expert systems, it could be defined as

done :- diagnosis(X).
which says to stop whenever some diagnosisis proved.

The preceding definition of hybrid only checks once per cycle whether it is done. To stop sooner, we could put
the check inside one_cycle like this:

hybrid :- done.

hybrid :- not(one_cycle), hybrid.

one_cycle :- r, done.

But this requires more calls to done, not agood ideaif doneisacomplicated calculation.

Note: this approach can handle notsin rules, though differently from the algorithm in Section 6.4 since nots

will be evaluated on every cycle. But as with the algorithm, any not must occur before any rule with the
argument to the not asitsleft side, or we'll get wrong answers.

Implementing pure forward chaining (*)

Pure forward chaining requires yet another rule form. (See a Section 7.14 for how to rewrite rules automatically
in thisform.) Since pure forward chaining repeatedly finds and "crosses out” expressions on the right sides of
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rules, it would help to express rule right sides as lists, for then we can use our member and delete list-
processing predicates from Chapter 5. We can do this by making rules akind of fact, say using arule predicate
name. The first argument to rule can be the left side of the original rule, and the second argument the list of
predicate expressions "and"ed on the right side. So these rules

a .- b.

c :- d, e, f.

g(X) :- h(X, Y), not(f(Y)).
become

rule(a,[b]).

rule(c,[d,e, f]).
rule(g(Xx), [h(X,Y),not(f(Y))]).

and the two sample rules from the appliance diagnosis program
di agnosi s(' fuse blown') :- power_problem askif(lights out).
power _problem :- askif(device_dead), askif(has(knobs)),
aski f (knobs_do_sonet hi ng) .
become
rul e(di agnosi s(' fuse bl own'), [ power_problemaskif(lights_ out)]).
rul e( power probl em
[ aski f (devi ce_dead), aski f (has(knobs)), aski f (knobs _do_sonething)]).
For now, we'll assume that the rules don't contain nots.
We also must represent facts. Pure forward chaining requires that we identify all facts, distinguishing them from
rules. We can do this by making each fact an argument to a predicate named fact, of one argument. Then to
bind F to every fact in turn, we query

?- fact(F), done.

which will backtrack repeatedly into fact. For every fact F, we must find the rules whose right sides can match
it, to derive new rules and possibly new facts. This suggests:

forward :- fact(F), not(pursuit(F)), done.

Unfortunately, we can't really implement “focus-of-attention” forward chaining this way, since we can't insert
new facts just after the last fact we selected, only at the beginning (with asserta) and end (with assertz) of the
database. To prevent fact reuse, we can delete facts once pursued. But deleted facts are still important to us
(obtaining facts is the whole point of forward chaining) so we'll copy them into usedfact facts before we delete
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them. The revised code:

forward :- done.
forward :- fact(F), not(pursuit(F)), assertz(usedfact(F)),
retract(fact(F)), forward.

(Remember from Section 6.1 that retract removes a fact from the database.) Then when we're done, al the
things we learned plus all the starting facts are in the database as arguments to the fact and usedfact predicates.

The pursuit predicate can cycle through the rules like one_cycle did in the hybrid implementation:
pursuit(F) :- rule(L,R), rule pursuit(F, L, R, fail.

For rule_pursuit we must search through the right side of arule, deleting anything that matches the fact F; we
can use the member and delete predicates of Sections 5.5 and 5.6 respectively. Asyou may dimly recall,
member checks whether an item isamember of alist, and delete removes all occurrences of an item from a
list. We need them both because delete always succeeds, and we'd like to fail when a match doesn't occur in the
list. So (Figure 7-3):

forward :- done.

forward :- fact(F), not(pursuit(F)), assertz(usedfact(F)),
retract(fact(F)), forward.

pursuit(F) :- rule(L,R), rule pursuit(F, L, R, fail.

rule pursuit(F, L, R :- nenber(F, R, delete(F, R Rnew),
new_rul e(L, Rnew) .

new rule(L,[]) :- not(fact(L)), asserta(fact(L)).

new rule(L,R) :- not(R=[]), asserta(rule(L,R).

The two new_rulelines say that when you've deleted everything on the right side of arule, the left sideis anew
fact; otherwise just write a new, shorter and simpler rule. And here again are member and delete:

menber (X, [ X L]).

menber (X, [ Y| L]) :- menber(XL).

delete(X [],[1).

delete(X, [ X|L],M :- delete(X,L,M.

delete(X, [Y|L],[YIM) :- not(X=Y), delete(X L, M.

Aswith the rule-cycle hybrid, you must define done appropriately. If you want to make sure that all possible
conclusions are reached, use

done :- not(fact(X)).

which forces forward chaining to continue until there are no more fact facts, in which case everything learned
(aswell astheinitial facts) is ausedfact. (Note thisrule violates our advice in Section 3.6 to avoid nots whose
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variables aren't bound. Here we want to stop if there's any unexamined fact X remaining, akind of existential
quantification, so it makes sense. A universally quantified negation is equivalent to an existentially quantified
unnegation; see Appendix A.) Alternatively, done can be defined to mean that one of a set of "goal" facts have
been proved.

The assertain thefirst new_rule rule isimportant because it forces focus-of -attention handling of new facts.
That is, the last fact found will be the next fact pursued, like a stack data structure, because of the recursion. As
we pointed out in the last chapter, the focus-of-attention approach often reaches interesting conclusions fast. If
we change asserta to assertz, we get a queue instead of a stack, with new facts pursued only after old facts.

Amazingly, the program works just fine when rules contain variables. This is because the basis step (first line)
in the member predicate definition can bind variables to succeed, and when it does those variables keep the
same bindings through the rest of the rule. If there is more than one matching of afact to arule, the program
will find each by backtracking to member. For instance, the rule

rule(a( X Y),[b(X Y),b(Y,X),b(X X)]).

can match the fact b(tom,dick) to either the first or second predicate expression on itsright side, giving two
new rules:

rul e(a(tomdick),[b(dick,tonm),b(tomtom]).
rul e(a(dick,tom,[b(dick,tom, b(dick,dick)]).

When forward chaining with the preceding program is slow, a ssmple change can often speed things up. That is
to delete the old rule when anew rule is formed. This speeds things up because the sum of the number of rules,
the number of facts, and the number of oldfacts stays constant instead of alwaysincreasing. To do this, we need
only add asingle expression to the rule_pursuit rule:

rule pursuit(F, L, R :- nenber(F, R, delete(F, R Rnew),
retract(rule(L,R)), new_rule(L, Rnew).

We can only do this safely for rule-based systems representabl e as and-or-not lattices, where there are either no
variables or only variables that can take a single binding. Otherwise deletion will throw away still-possibly-
useful rules, but this may not bother us if the odds are small they're still useful.

Forward chaining with "not"s (*)

Aswith hybrid chaining, we can avoid rules containing nots by substituting "unfact” predicate names
representing the opposite of other predicate names. Or we can require that arguments to nots never be
matchable to anything appearing on the left side of arule (DeMorgan's Laws can get the rules into this form;
see Appendix A). Then we rewrite the top level of the program to handle nots after it's done everything else:

full _forward :- forward, handl e nots.
handl e nots :- rule(L, R, nenber(not(X),R), not(usedfact(X)),
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not (fact (X)), delete(not(X),R2), new rule(L, R2), handl e nots.
handl e nots :- forward.

Thisis not quite the algorithm in Section 6.2, but it's close.

General iteration with "forall" and "doall" (*)

The iteration method of the rule-cycle hybrid and forward chaining programs can be generalized. First, suppose
we want to check whether some predicate expression Q succeeds for all possible variable values that satisfy
some other predicate expression P; that is, we want to check universal quantification of Q with respect to P. We
can do this by requiring that there be no way for Q to fail when P has succeeded previoudly, taking into account
any bindings. We can use the built-in call predicate of Prolog, which queries a predicate expression given as
argument:

forall (P,Q :- not(sonefailure(P, Q).
sonefailure(P,Q :- call(P), not(call (Q).

As an example, assume this database:

a(l).
a(2).
b(1).
b(2).
c(l).
c(2).
c(3).
d(1,5).
d(5,1).

Here are some example queries and their results:

?- forall (a(X),b(X)).
yes

?- forall (b(X),c(X)).
yes

?- forall (c(X),b(X)).

no

?- forall (c(X),d(XY)).
no

?- forall (d(X Y),d(Y, X)).
yes

Similarly, we can define a predicate that repeatedly backtracks into predicate expression P until P fails:
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doall (P) :- not(alltried(P)).
alltried(P) :- call(P), fail.

Assume this database:

a(l).

a(2).

a(3).

u(xX) :- a(x), wite(x).

V(X) - u(X), Yis X*X wite(Y), nl.

Then here are two examples:

?- doal |l (u(X)).
123

yes

?- doal I (v(X)).
1

4

9

yes

(Remember, write prints its argument on the terminal, and nl prints a carriage return.)

Thisdoall isjust what the forward chaining program accomplishesin the pur suit predicate. So we can rewrite
the first four lines of the forward chaining program as

forward :- done.
forward :- fact(F), doall(pursuit(F)), assertz(usedfact(F)),
retract(fact(F)), forward.

pursuit(F) :- rule(L,R), rule pursuit(F L, R).
instead of
forward :- done.

forward :- fact(F), not(pursuit(F)), assertz(usedfact(F)),
retract(fact(F)), forward.
pursuit(F) :- rule(L,R), rule_pursuit(F, L, R, fail.

And in the rule-cycle hybrid

hybrid :- done.
hybrid :- doall(r), hybrid.
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can be used instead of

hybrid :- done.
hybrid :- not(one_cycle), hybrid.
one_cycle :- r, fail.

And the code for handling notsin forward chaining given in Section 7.11 can be improved to

full forward :- forward, doall (handl e not), forward.
handl e not :- rule(L,R), nmenber(not(X),R), not(usedfact (X)),
not (fact (X)), delete(not(X),R2), new rule(L, R2).

instead of

full _forward :- forward, handl e nots.

handl e nots :- rule(L, R, nenber(not(X),R), not(usedfact(X)),
not (fact (X)), delete(not(X),R2), new rule(L, R2), handl e _nots.

handl e nots :- forward.

The changes improve program readability.
Input and output of forward chaining (*)

Fact pursuit is only part of what we need for forward chaining. We must also handle input and output differently
than with backward chaining. Backward chaining asked the user a question whenever an answer was relevant to
some conclusion under study. This can mean that many irrelevant questions are asked before backward chaining
hits on the right conclusions to try to prove. Forward chaining, on the other hand, focuses on a set of facts. The
facts must get into the database somehow to start things off.

Two approaches are possible. First, give aquestionnaire, a fixed set of questionsto a user presented one at a
time, and code answers into facts. Fixed questionnaires are common in the early part presented one at atime of
medical diagnosis, when adoctor triesto get a broad picture of the health of a patient before moving on to
specifics. Second (especially if most possible facts don't have arguments), give a menu, a set of questions
presented simultaneously to the user, and ask which questions should be answered yes. For diagnosis
applications, the menu can contain common symptoms. Menus are good when there are |ots of possible facts,
few of which are ssmultaneously relevant to a case.

Both are straightforward to implement in Prolog. Questionnaires can be done by a fixed sequence of callsto the
askif predicate defined in Section 7.3. The answer to each question will cause the assertion of asked and fact
facts. Menus can be implemented by an ask_which predicate | REFERENCE 1|: .FS | REFERENCE 1| It's
interesting to compare this program to the forward-chaining program in Section 7.10: this represents more a
Lisp style of programming, with recursion through lists and no expectation of backtracking. The forward-
chaining program represents more a Prolog style of programming, with frequent backtracking and no lists. .FE
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ask_which([A/B,C, D, E,F,GHL]) :-
screen_ask which([A,B,C D E,F,GH ,[A B CDEFGH),

ask_which(L).

ask_which([]).

ask_which(L) :- length(L,N), N<9, N>0, screen_ask which(L,L).
screen_ask_which([ X L],L2) :- length(L, N, I[ength(L2, N2),

N3 is N2 - N wite(N3), wite(': '), questioncode(X Q,
wite(Q, wite('?"), nl, asserta(asked(X, no)),
screen_ask_whi ch(L, L2).
screen_ask_which([],L2) :-
wite('Gve nunbers of questions whose answer is yes.'),
read(AL), create facts(AL,L2), nl.

create facts([NL],L2) :- item(N L2,1), assertz(fact(l)),
retract (asked(l,no)), asserta(asked(l,yes)), create facts(L,L2).
create facts([NL],L2) :- not(item(N,L2,1)), create facts(L,L2).

create_facts([],L2).
item(1, [ X L], X).
item(N, [ X L], 1)
menber (X, [ X| L]) .
menber (X, [ Y| L])
length([],1).

l engt h([ X] L], N)

N>1, N2is N1, item(N2,L,1).

menber ( X, L).

l ength(L, N2), N is N2+1.

Here's an example use, assuming the questioncode definitions for appliance diagnosis given earlier (Section
7.6):

?- ask_which

([ devi ce_dead, knobs_do_sonet hing, lights out, cord frayed,
handyper son, fam | i ar _appl i ance, devi ce_on, j ust _pl ugged, i n_socket,
snel | _snoke, | i qui ds, heat s, power f ul , has(knobs), has(' novi ng parts'),
has(' knobs, swi tches, or other controls'),

hear (pop), hear (' weird noise')]).

1. Does the device refuse to do anything?

2: Does changing the switch positions or turning

t he knobs change anyt hi ng?

3: Do all the lights in the house seemto be off?

4. Does the outer covering of the cord appear to be

com ng apart?

5: Are you good at fixing things?

6: Are you famliar wth how this appliance works?

7: Is the OV OFF switch set to ON?

8: Did you just plug the appliance in?

G ve nunbers of questions whose answer is yes.[3,4,5,7].

1: Is the cord firmy plugged into the socket?
2: Do you snell snoke?
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3: Have any liquids spilled on the appliance just now?

4. Does the appliance heat things?

5: Does the appliance require a | ot of power?

6: Does the appliance have knobs?

7: Does the appliance have noving parts?

8: Does the appliance have knobs, switches, or other controls?
G ve nunbers of questions whose answer is yes.[6,8].

1. Did you hear a pop?

2: Did you hear a weird noi se?

G ve nunbers of questions whose answer is yes.[].
yes

To verify that the correct facts were asserted, we can use Prolog's built-in listing predicate that takes one
argument, a predicate name, and prints out every fact and rule with that name:

?- listing(fact).

fact (devi ce_dead).

fact(lights out).

fact(cord _frayed).

fact (handyperson).

fact (device_on).

fact (has(knobs)).

fact (has(' knobs, switches, or other controls')).
yes

Fact order is very important to the operation and hence the efficiency of forward chaining (see Figure 6-3).
Furthermore, if your definition of the done predicate is anything besides not(fact(X)), an incorrect fact order
may prevent all correct conclusions. So it isagood ideato order question presentation from most important to
least important, since facts are entered with assertz. To allow some user control, the preceding program asserts
choices for each individual menu in user-supplied order. We set the menu size to eight questions in the program,
but you can easily change it if you want to improve user control and your terminal screen istall enough.

For most applications, you shouldn't put every possible fact into menus. Y ou should put the things most
common in rulesin afirst set of menus, and then run forward chaining and see what conclusions you reach. If
no "interesting" conclusions are reached (interestingness could mean membership in a particular set), then
present further menus to the user (perhaps about things mentioned on the right sides of the shortest remaining
rules), assert new facts, and run forward chaining again. Y ou can repeat the cycle as many times as you like.
Thisisafact partitioning trick for rule-based systems, as opposed to the rule partitioning trick in Section 7.8.
For appliance repair for instance, the first menu could list key classificatory information, such as whether it has
a heating element, whether it has mechanical parts, whether it gets electricity from an outlet or from batteries,
and what part of the appliance is faulty. After forward chaining on these facts, further menus could obtain a
detailed description of the malfunction.

Both menus and questionnaires should not "jump around” too much between topics as backward chaining often
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does. People are easily confused by rapid shifts in subject, and asking related questions, even irrelevant ones,
makes them feel more comfortable. Doctors know this.

Ordering of output (conclusions) presentation isimportant too for forward chaining. Backward chaining just
establishes one conclusion at atime, but forward chaining may establish awhole lot of interesting conclusions
about some problem. In fact thisis one of its advantages, that it can determine not one but multiple
simultaneous problems are causing observed symptoms. If these conclusions are numerous, it's good to sort
them by afixed priority ordering.

Rule form conversions (*)

The rule forms needed for backward chaining, hybrid chaining, and forward chaining are al different. So it
would be nice to automatically convert rules from one form to another. That means treating rules as data,
something important in many different areas of artificial intelligence, and supported by most dialects of Prolog
and Lisp.

Prolog does this with the clause predicate in most dialects. This has two arguments representing aleft and a
right side of arule. A query on clause succeedsif its arguments can match the left and right sides of a database
rule. (Remember, facts are rules without |eft sides.) So for instance

?- clause(a, R).

binds the variable R to the right side of thefirst rule it can find that has a asits left side. The arguments to
clause can also be predicate expressions containing arguments themselves. So

?- clause(p(X),R.

will try to find arule with ap predicate of one argument on its left side, and will bind that one argument (if any)
to the value of X, and R to the query representing the right side of that rule | REFERENCE 2|. .FS |
REFERENCE 2| Many Prolog dialects require that the predicate name in the first argument be bound, though
arguments to that predicate name may have variables. If you have alist of all predicate names, you can iterate
over them to do this. .FE

Facts are just rules with no left sides. And clause recognizes this, also matching facts in the database as well as
rules. Then itsfirst argument is bound to the fact, and the right side is bound to the word true. For example, if
for the preceding query we have afact p(a) in our database, one answer will be X=a with R bound to true.

To automatically convert aruleto forward chaining form, we can access it with clause, then convert the right
side of therule to alist. The second argument of the clause predicate is bound to a query, not alist, so we need a
list conversion operation. Thisis called "univ" and is symbolized in most Prolog dialects by the infix predicate
"=..", for which the stuff on the left side is a predicate expression and the stuff on the right side is an equivalent
list. So we can say

?- clause(L,R), R=.. Rist.
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and Rlist isalist, aswe need for forward chaining. Here's the full code for converting all rulesin a Prolog
database to forward-chaining form:

forward convert :- clause(L,R), not(overhead predicate(L)),
R=. Rist, newrule(L,Riist), fail.

over head_predi cate(new rule(X Y)).

over head_predi cate(rule(X Y)).

over head_predi cate(fact(X)).

new rule(L,[]) :- not(fact(L)), asserta(fact(L)).

new rule(L,R) :- not(R=[]), asserta(rule(L,R)).

over head predicate(forward convert).

over head predi cate(overhead _predicate(X)).

If your Prolog dialect doesn't allow L to be unbound, you can use:

forward convert (Al predicates) :- nenber(L, All predicates),
forward convert2(L).
forward convert2(L) :- clause(L,R, R=. Rist, newrule(L, Riist), fail.
new rule(L,[]) :- not(fact(L)), asserta(fact(L)).
new rule(L,R) :- not(R=[]), asserta(rule(L,R).

and you must query forward_convert with alist of al the predicates you want to convert.

But all thiswon't work in some Prolog dialects that treat commas and semicolons like infix operators. If the
preceding doesn't work for you, try:

forward convert(Preds) :- nenber(Pred, Preds), forward convert2(Pred).
forward _convert2(Pred) :- clause(Pred, R, renove_commas(R, R2),
new rul e(Pred, R2), fail.
renmove_commas(true,[]).
remove_commas(S,[Y|L]) :- S= .[Comm,Y,Z], renove_commas(ZL).
remove_comas(X, [ X]) :- not(X=true), not(X=..[Comm,Y, Z]).
menber (X, [ X L]).
menber (X, [Y|L]) :- menber(XL).
new rule(L,[]) :- not(fact(L)), asserta(fact(L)).
new rule(L,R) :- not(R=[]), asserta(rule(L,R)).

We can apply the same approach to the hybrid control structure. We convert the right side of each backward-
chaining ruleto alist, insert anot expression at the front of thislist, insert an asserta expression at the end of
the list, and replace the original left side with the single symbol r. We then can use the =.. operation in reverse
(the left side unbound and the right side bound), converting the list of right-side expressionsto a query. We
enter this new rule into the Prolog database using asserta with this new rule as argument. Here's the full code:

hybrid _convert :- clause(L,R), R=. Rist,
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add | ast(asserta(L),Rist,Rist2),
R2 =.. [not(L)|Rist2], asserta(r :- R2), fail.
add_last (X [],[X]).

add last (X [Y|L],[Y|L2]) :- add_last(X, L,L2).

If your Prolog dialect doesn't allow L to be unbound, you can use:

hybrid _convert (Al _predicates) :- nenber(L, All predicates),
hybri d_convert 2(L).

hybri d_convert2(L) :- clause(L,R), R=.. Rist,
add_| ast(asserta(L),Rist,Rist2),
R2 =.. [not(L)|RIist2], asserta(r :- R2), fail.

add last (X [],[X]).
add_last (X [YIL],[Y L2]) :- add_last(XL,L2).

and if none of that worksin your Prolog dialect, you can try this alternative hybrid-chaining program which
doesn't directly convert Prolog rules but interprets them as needed:

hybri d(Leftsidelist) :- done.

hybri d(Leftsidelist) :- not(one_cycle(Leftsidelist)), hybrid(Leftsidelist).
one_cycle(Leftsidelist) :- nmenber (P, Leftsidelist), clause(P, R,
renove_commas(R R2), allfacts(R2), not(P), asserta(P), fail.

menber (X, [ X| L]) .

menber (X, [ Y| L]) :- menber(XL).

renmove_commas(true,[]).

remove_commas(S,[Y|L]) :- S= .[Comm,Y,Z], renove_commas(ZL).
remove_commas( X, [ X]) :- not(X=true), not(X=..[Comm,Y, Z]).

all facts([]).

all facts([Term L]) :- clause(Termtrue), allfacts(L).

Indexing of predicates (*)

Prolog interpreters automatically index predicate names appearing on the left sides of rules, to help in backward
chaining; that is, they keep lists of pointersto all rules with a particular predicate name, to speed finding them.
But thiswon't help our rule-cycle hybrid and forward chaining implementations, for which we must do our own
indexing if we want efficiency.

Let's take pure forward chaining as an example. Indexing could mean storing for each predicate name alist of
which ruleright sidesit appearsin. One way isto generalize the rule predicate of Section 7.10to arules
predicate whose first argument is a predicate expression P and whose second argument is alist of pairs
representing rules containing P on their right side. The first item of each pair isarule left side, and the second
item isaruleright side containing the specified predicate name. So the rules

a:- b, c.
d:- c, e, f.
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are written as

rules(b,[[a,[b,c]]]
rules(c,[[a,[b,c]],
rules(e,[[d,[c,e,f]
rules(f,[[d,[c,e,f]

and just changing pur suit, the forward chaining program becomes:

forward :- done.
forward :- fact(F), doall(pursuit(F)), assertz(usedfact(F)),
retract (fact(F)), forward.

pursuit(F) :- rules(F,Rlist), nenmber([L,R,Rist), rule pursuit(F, L, R).
rule pursuit(F, L, R :- nmenber(F, R, delete(F, R Rnew), new rul e(L, Rnew).
new rule(L,[]) :- not(fact(L)), asserta(fact(L)).

new rule(L,R) :- not(R=[]), asserta(rule(L,R)).

A rulewith K expressions on itsright side is repeated K times this way, so this indexing buys speed at the
expense of space. The speed advantage comes from eliminating the member predicate in the earlier
Implementation; we have cached in advance the results of running member .

Clever indexing techniques have been developed in both artificial intelligence and database research, and much
further can be done along these lines.

Implementing meta-rules (*)

Meta-rules are rules that treat rules as data, usually by choosing the one to use next (conflict resolution).
Choosing means treating rules as data. So meta-rule implementation needs special rule formats like those for
hybrid and pure-forward chaining, and can exploit clause and =.. for rule-form conversion. We can represent
meta-rules as rules with a special prefer predicate name on their left sides. The prefer will take four arguments:
the left side of arule 1, theright side of rule 1 (as alist), the left side of arule 2, and theright side of rule 2 (asa
list). It should succeed when rule 1 is preferable (to execute next) to rule 2. (Of course, none of your regular
rules can have a prefer predicate name for thisto work.) Here's an example:

prefer(L1,RL, L2, R2) :- length(Rl, Lenl), length(R2,Len2),
Lenl < Len2.

This says arule with shorter right side should be preferred. Predicate length was defined in Section 5.5, and
computes the number of itemsin alist:

l ength([],0).
length([X]L], N :- length(L,N2), Nis N2 + 1.
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Another example:
prefer(a(X),R1, a(Y),R2) :- nenber(b(2),Rl), not(nmenber(b(W, R2)).

This saysthat if two rules both conclude something about one-argument predicate a, oneis preferred if it
mentions one-argument predicate fact for the second) concluding about a one-argument predicate a, whether
their arguments are constants or variables.

Meta-rules are most useful when they refer, unlike these two examples, to the current state of reasoning rather
than the unvarying text of rules. As an example, consider this meta-rule to be used with pure forward chaining:

prefer(L1l, Rl, L2, R2) :- nmenber(b,Rl), not(nenber(b, R2)), fact(b).

This saysto prefer arule that mentions predicate expression b to one that doesn't, whenever b was proved a
fact. A more useful meta-rule saysto prefer the rule used most recently:

prefer(Ll1,RLl, L2, R2) :- used(Ll,R1,T1), used(L2,R2,T2), T1 > T2.

Here we assume used is afact asserted after each successful rule application, stating the time a rule was used
(times can be increasing integers). Such meta-rules permit flexible control adjustable to the processing context,
something general-purpose control structures can't do by themselves.

Programmers can write these meta-rules at the same time they write the rules for an application. The set of meta-
rules can express a lattice of orderings (or partial ordering) of rule preferences, but not necessarily a complete
ordering or sorting. So it's possible for neither of two rulesto be preferred to the other, in which case we can
pick one arbitrarily.

M eta-rules enhance general-purpose control structures, and aren't a control structure by themselves. This means
that meta-rule implementation is different for backward, hybrid, and forward chaining. With backward
chaining, meta-rules pick arule or fact (not necessarily the first in database order) to try to match to a predicate
expression in aquery or rule right side. With hybrid chaining, meta-rules pick arule from the entire set of rules
to run next. With pure forward chaining, meta-rules can both select afact to try next and select aruleto try to
match the fact to. As an example, here's an implementation of meta-rules with hybrid chaining.

nmet ahybrid : - done.

nmet ahybrid :- pick rule(R), call(R), netahybrid.
pick rule(R) :- clause(r,R), not(better rule(R)).
better rule(R) :- clause(r,R2), prefer(r,R2,r,R).

This assumes rules are written in the standard hybrid form with r on the left side and the two extra things on the
right side. Rules are repeatedly executed (using the call predicate, which executes a query asif it were typed in)
until the done condition is satisfied. A rule is chosen to execute only if no other rules are preferred to it
according to the meta-rules.
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Implementing concurrency (*)

Several Prolog dialects provide for concurrency of rules and expressionsin rules. The emphasis is programmer's
tools to indicate good places to do concurrency rather than automatic choice. For instance, a specia "and"
symbol, used in place of acomma, can specify "and"-parallelism on the right side of arule. These approaches to
concurrency are complicated and incompatible with each other, and we won't discuss them here.

Decision lattices: a compilation of a rule-based system (*)

Compilers and compilation are important concepts in computer science. Compilers take a program in an easy-to-
read but slow-to-execute form and convert it to a more efficient, easier-to-interpret form. Compilation is often
rule-based itself, especially often-complicated code optimization. But compilation techniques can also make
artificial intelligence programs themselves more efficient. Since rule-based systems are further stepsin power
beyond traditional higher-level languages like Pascal, Ada, PL/1, and Fortran, secondary compilations are
usually done before the primary compilation to machine language. These secondary compilations convert rules
to the format of those languages. formats without references to backward, forward, or hybrid chaining, and with
no backtracking, no postponing of variable bindings, and no multiway designation of inputs and outputs to
predicate expressions. The decision lattice representation of rulesintroduced in Section 6.8 is one such
secondarily-compiled format. It starts at some node in alattice, and depending on how a user answers a
question, it those to some next node in the lattice. Each question represents another branch point. When it gets
to anode that is aleaf (a node from which it cannot go any further), it retrieves the conclusion associated with
that node.

A decision lattice for a set of rules can be created systematically (albeit not algorithmically, sinceit involves
some subjective judgment) from rules without "or"s on their right sides, by the following (similar to "automatic
indexing" methods):

1. For every top-level or diagnosis rule, repeatedly substitute in the definitions for (right sides of)
al intermediate predicates on itsright side, until no more remain. If there is more than one rule
proving an intermediate predicate, make multiple versions of the diagnosis rule, one for each
possibility. (Thisis auseful compilation method even if you don't want a decision lattice; it's
called rule collapsing.)

2. Examine the right sides of the new rules. Pick a predicate expression that appears unnegated in
some rules and negated in an approximately equal number (the more rules it appears in, the better,
and the more even the split, the better). Call this the partitioning predicate expression, and have
the first question to the user ask about it. Create branches from the starting node to new nodes,
each corresponding to a possible answer to this question. Partition the rules into groups
corresponding to the answers, and associate each group with one new node (copies of rules not
mentioning the predicate expression should be put into every group). Then remove all
occurrences of the expression and its negation from the rules. Now within each rule group,
separately apply this step recursively, choosing a predicate that partitions the remaining rulesin
the group best, and taking its questioning next.
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An example will make this clearer. Suppose we have facts, a, b, ¢, d, and e, and possible diagnoses (final
conclusions) r, s, t,u, and v. Suppose these are the rules:

r .- a, d, not(e).

s :- not(a), not(c), q.
t :- not(a), p.

u:- a, d, e.

u:- a, q.

v :- not(a), not(b), c.
p :- b, c.

p :- not(c), d.

g :- not(d).

For the first step (preprocessing), we substitute in the intermediate predicates p and q. (Intermediate predicates
are just anything that occurs on both aleft and aright side.)

- a, d, not(e).

.- not(a), not(c), not(d).
- not(a), b, c.

not(a), not(c), d.

- a, d, e.

:- a, not(d).

.- not(a), not(b), c.

< cc -+ n =
1

For the second step we first examine right sides of rules to find something mentioned in alot of rules that
partitions them evenly as possible. Expression a is the obvious choice, because it is the only expression
occurring in every rule. So we partition on a, deleting it from the rules, getting two rule sets:

r .- d, not(e). [/* Subdatabase for "a" true */

u:- d, e.

u:- not(d).

S :- not(c), not(d). /* Subdatabase for "not(a)" true */
t :- b, c.

t :- not(c), d.

v :- not(b), c.

Thefirst set will be used whenever the fact a is true, and the second set will be used whenever the fact aisfase.
In thefirst group d appearsin al rules, so it can be the partitioning expression. Likewise, ¢ can partition the
second group. This gives four rule groups or subdatabases:

r :- not(e). /* The "a, d" rule subdat abase */
u:- e.
u. /* The "a, not(d)" subdatabase */
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t :- b. /* The "not(a), c" subdatabase */

v :- not(b).

S :- not(d). /* The "not(a), not(c)" subdatabase */
t - d.

Three of the four groups are two-rule, for which one more partitioning gives a unique answer. The final decision
lattice created by thisanalysisis shown in Figure 7-4.

Decision lattice compilations of rule-base systems can be easily written in any computer language, including
Prolog. Give code names to every node in the decision lattice, including the starting and ending nodes. Then
define a successor predicate of two arguments that gives conditions for one node to be followed by another
node. For instance, for our previous example:

successor(nl,n2) :- askif(a).
successor(nl,n3) :- askifnot(a).
successor(n2,n4) :- askif(d).
successor(n4,u) :- askif(e).
successor(n4,r) :- askifnot(e).
successor(n2,u) :- askifnot(d).
successor(n3,n5) :- askif(c).
successor(n5,t) :- askif(b).
successor(n5,v) :- askifnot(b).
successor (n3,n6) :- askifnot(c).
successor(n6,t) :- askif(d).
successor (n6,s) :- askifnot(d).

Then we query a new diagnosis predicate defined:

di agnosi s(Node, Node) :- not(successor (Node, X)).
di agnosi s(D, Start) :- successor(Start, X), diagnosis(D, X).

For the preceding example we also need away to query the facts:

guestioncode( X, X) :- nenber(X,[a,b,c,d]), wite('ls this correct: ').
menber (X, [ X| L] ).
menber (X, [ Y| L]) :- nmenber(XL).

And here's what happens:

?- diagnosis(X nl).

Is this correct: a? no.
Is this correct: c? yes.
Is this correct: b? no.
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X=V;
no

This program is a smple example of "search" programs, which we'll study in much more detail in Chapters 9,
10, and 11.

Summary of the code described in the chapter (*)

Warning: in using the following, make sure your own code does not redefine or even duplicate the definitions of
any predicates used, or you can be in serious trouble.

The following rules assist question-asking for backward, forward, and hybrid chaining. The ask predicate asks
the user a question, providing extra explanation if the user types a question mark, and returns the answer (after
caching it). The questioncode and explain predicates must be provided by the programmer; the first decodes
questions, and the second provides additional explanation for particular questions when the user has trouble
understanding. The askif predicate handles yes/no questions; it succeeds if the user answers positively, failsif
the user answers negatively, and requests another answer if the user answers anything else. Warning: do
abolish(asked,2)) to erase memory before a new situation (problem), if you want to solve more than one
situation.

/* Tools for questioning the user */
aski f (Qode) :- ask(Qode, A), positive_answer(Qcode, A).
aski f not (Qcode) :- not(askif(Qode)).

positive_answer ((Qode, A) :- affirmative(A).
positive_answer ((Qode, A) :- not(negative(A)),
not (affirmative(A)), wite(' Pl ease answer yes or no.'),
read(A2), retract(asked(Qode, A)),
asserta(asked(Qode, A2)), affirmative(A2).

ask(Qode, A) :- asked(Qcode, A).
ask(Qode, A) :- not(asked(Qcode, A)), questioncode(Qode, Q,
wite(Q, wite('? '), read(A2), ask2(Q Qcode, A2, A).

ask2(Q Qcode,'?' ,A) :- explain(Qode), ask(Qode, A).
ask2(Q code, A/A) :- not(A="7?"), asserta(asked(Qcode, A)).

affirmati ve(yes).
affirmative(y).
affirmati ve(ye).
affirmative(right).
affirmati ve(ok).
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affirmati ve(uhhuh).

negati ve(no).
negative(n).

negati ve(not).
negati ve( never).
negati ve(i npossi bl e).
negati ve( haha).

To do rule-cycle hybrid chaining, write the rules with r on their left sides, and an asserta of the original left
side on the right end of the right side. No rules can contain not. Then query hybrid, using this program:

/* Probl emindependent rule-cycle hybrid chaining */

hybrid :- done.
hybrid :- doall(r), hybrid.

doall (P) :- not(alltried(P)).

alltried(P) :- call(P), fail.

To do pure forward chaining, write the rules as facts with predicate namerule, for which the first argument isa
left side and the second argument is the corresponding right side. No rules can contain not. Then query
forward, defined thisway:

/* Probl emindependent forward chaining */

forward :- done.

forward :- fact(F), doall (pursuit(F)), assertz(usedfact(F)),
retract(fact(F)), forward.

pursuit(F) :- rule(L,R), rule pursuit(F, L, R).

rule_pursuit(F, L, R :- nmenber(F, R, delete(F, R Rnew),
new_rul e(L, Rnew).

new rule(L,[]) :- not(fact(L)), asserta(fact(L)).
new rule(L,R) :- not(R=[]), asserta(rule(L,R)).

doall (P) :- not(alltried(P)).
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alltried(P) :- call(P), fail.

menber (X, [ X| L] ).
menber (X, [Y|L]) :- nmenber(XL).

delete(X [],[1).
delete(X, [X|[L],M :- delete(X,L,M.
delete(X, [Y|L],[YIM) :- not(X=Y), delete(X L, M.

When this program stops, the learned facts are left as assertions of fact and usedfact predicates. If you want to
make sure that all possible conclusions are reached, use this definition of done:

done :- not(fact(X)).

If you want to speed up forward chaining, and your rule-based system can be represented as an and-or-not
lattice, you can rewrite the preceding rule pursuit rule as:

rule pursuit(F,L,R :- nmenber(F, R), delete(F, R Rhew), retract(rule(L,R)),
new_rul e(L, Rnew).

If you want to do forward chaining with predicate expressions having nots, first make sure the nots all refer to
fact predicates. Then execute full_forward:

full forward :- forward, doall (handl e not), forward.

handl e not :- rule(L,R), nenber(not(X),R), not(usedfact (X)),
not (fact (X)), delete(not(X),R2), new rul e(L, R2).

Meta-rules can enhance other control structures. They can be written as rules with predicate name prefer, of
four arguments (the left and right sides of two rules, respectively) that give conditions under which the first rule
should be executed before the second rule. For meta-rules with hybrid chaining, execute the query metahybrid
with this aternative code:

/* Probl emindependent rul e-cycle hybrid chaining using neta-rules */
nmet ahybrid :- done.
nmet ahybrid :- pick rule(R), call(R), netahybrid.

pick rule(R) :- clause(r,R), not(better rule(R)).
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better rule(R) :- clause(r,R2), prefer(r,R2,r,R).

To implement menus as away of getting facts to do forward chaining, execute ask_which with argument the
list of question codes for the facts you want to check.

/* Menu generation for forward chaining */
ask which([A B,C D EF,GHL]) :-
screen_ask which([A B,C D EFGH ,[ABCDEFGH),

ask_whi ch(L).
ask_which([]).
ask_which(L) :- length(L,N), N<9, N>0, screen_ask_which(L,L).
screen_ask which([ X/ L],L2) :- length(L,N), length(L2, N2),

N3 is N2 - N wite(N3), wite(': '), questioncode(X Q,
wite(Q, wite('?"), nl, asserta(asked(X, no)),
screen_ask_whi ch(L, L2).

screen_ask_which([],L2) :-
wite('dve nunbers of questions whose answer is yes.'),
read(AL), create_facts(AL,L2), nl.

create facts([NL],L2) :- item(N L2,1), assertz(fact(l)),
retract (asked(l,no)), asserta(asked(l,yes)), create facts(L,L2).
create facts([NL],L2) :- not(item(N,L2,1)), create_ facts(L,L2).

create_facts([],L2).

item(1,[X L], X).
item(N, [ X L], )

N>1, N2is N1, item(N2,L,1).

menber (X, [ X| L] ).
menber (X, [ Y| L])

menber (X, L).

length([],1).
l engt h([ X] L], N)

l ength(L, N2), N is N2+1.

To implement a decision lattice, draw the lattice and label all the nodes with unique names. Write rules defining
the branches with the successor predicate, for example

successor(n5,n9) :- askif(device dead).
successor (n5,nl5) :- askifnot(device dead).
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which saysthat if you're at node n5, go to node n9 if the user responds positively to the device_dead question,
otherwise go to node n15. Then to run the decision lattice call diagnosis(D,<first-node>), which needs this
definition:

di agnosi s(D, Start) :- successor(Start, X), diagnosis(D, X).
di agnosi s(Node, Node) :- not(successor (Node, X)).

Keywords:

di agnosi s

character string

I nput codi ng

out put codi ng

I nt er medi at e predicates
menu

.SH Exercises

7-1. (R,A,P) Improve the appliance-diagnosis program given in Section 7.6 so it can reach the following new
diagnoses:

--the motor has burned out, for appliances that have motors;

--something is blocking the mechanical operation (like something keeping the motor from
turning), for mechanical appliances,

--some internal wiring is broken (possible if appliance was dropped recently, or some other
jarring occurred);

Add new questions and perhaps intermediate predicates to handle these diagnoses. Show your new program
working.

7-2. (A,P) Figure out asimple way to prevent repeated printing of the same diagnosis in the backward-chaining
appliance program as in Section 7.7. Show your method working on the appliance program.

7-3. (E) (a) Medical records often reference very-high-level and very-low-level concepts only, no intermediate
concepts. Isthistypical of other expert-system application areas?

(b) Suppose you must defend intermediate concepts in an expert system to your boss or representative of a
funding agency. They could claim that intermediate concepts don't add capabilities to an expert system, just
make its innards neater. Furthermore, intermediate concepts require extra design effort, and slow down
operation by forcing reasoning to proceed by smaller steps. How would you reply in defense of intermediate
predicates?

7-4. (P,H,G) Design arule-based expert system to give debugging advice about Prolog programs. Use backward
chaining in the manner of the appliance example, asking questions of the user. Thereisalot of room for
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creativity in the choice of what the program knows about, but the program must help debug Prolog programsin
some way. Be sure:

1. Your program is a rule-based expert system:

2. Your program contains at least 20 diagnosis rules (rules drawing a conclusion about what is
wrong with a Prolog program), 12 of which have more than one kind of evidence "and"ed on their
right side;

3. Your program uses at least three intermediate conclusions, conclusions that are neither
equivalent to facts nor correspond to advice to the user;

4. Y our program can reach at least seven different conclusions depending on the user's answers to
the questions,

5. Three of the conclusions your program reaches appear on the left side of more than one rule
(that is, there must be multiple paths to three conclusions);

6. Your program uses at least three kinds of history information, like how long the user has been
programming Prolog, or whether parts of the user's program are already debugged;

7. The control structure of your program is not extensively "hard-wired" (for instance, there can't
be alot of branch specifications controlling where to go next);

8. Asmuch as possible, all the variables and predicate names are semantically meaningful (that is,
their function should be explained by their names; use numbersin your program only for
(possibly) probabilities).

Use of probabilities or certainty factorsis not necessary. Think about good ways to present your conclusions to
the user.

7-5. (A) (For people who know something about probabilities.) Caching of facts in backward chaining is not
always a good idea; it depends on the situation. Suppose we have rules for testing whether a(X) is true for some
X, rules that require R units of time to execute on the average. Suppose to speed things up we cache K values of
X for which the a predicate holds. That is, we place facts for those values in front of the rules that calculate
a(X) as previously. Then to answer a query on the a predicate, we first sequentially search through all these
cached facts, and use the rules only if we can't find a match in the cache.

(a) Suppose the probability is P that any one item in the cache matches an incoming query, and suppose the
cache items are al different and do not have variables, so if one item matches the query no other item will.
Under what approximate conditions will using the cache be preferable to not using the cache? Assume that [K <
0.1/ P|, and assume that each cache access requires one unit of time.

(b) Now assume the items of the cache are not all equally likely to be used. Often a Zipf's Law distribution
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applies, for which the probability of the most common item is P, the probability of the second most common
item is P/2, the probability of the third most common item is P/3, and so on. Again assume cache items are
mutually exclusive. Again assume that each cache access requires one unit of time. Under what approximate
conditionsis caching desirable now? Hint: the sum of |1/ 1| from || = 1| to [K|is approximately |log sub 2 (K +
1))

7-6. (P) Write arule-based expert system to recommend cleaning methods for clothing. Obtain rules from a
human "expert" on the subject. Use hybrid chaining in implementation for simplicity. Ask the user to give a
single category that best describes the material they want to clean, and then ask additional questions as
necessary to make its description more precise. Write at least twenty rules reaching at least ten different
cleaning methods as conclusions. Use alot of a_kind_of factsto classify the many kinds of clothing. Y ou'll
need to worry about rule order, and default rules will help.

7-7. The criteriafor when to delete arule in forward chaining were conservative: they miss other circumstances
under which it would be good to delete rules. Define those circumstances, and explain how we could efficiently
check for them.

7-8. (H,P) Write a program to diagnose malfunctions of a car using forward chaining in the pure form. Write at
least fifty rules and use at |east ten intermediate predicates. Use arepair manual as your source of expertise.
Concentrate on some particular subsystem of the car to do a better job. Use the menu approach to defining facts.
Provide for at least two invocations of forward chaining, and stop when one of a set of diagnosisfactsis
proved.

7-9. (H,P) Write arule-based expert system to diagnose simple illnesses and medical problems (such asa
“primary care" or "family practice” physician might handle). Use a medical reference book as your source of
knowledge. Y our program should be able to reach 30 different diagnoses, at least seven in more than one way,
using at least five intermediate predicates. Run your rules with both backward chaining and forward chaining
and compare performance. To do this, use the automatic conversion routines, or use the forward-chaining rule
form and write your own backward-chainer. For forward chaining, let the user pick symptoms from a series of
menus, and ask questions of the user directly for additional secondary facts. Show your rules working on
sample situations.

7-10. (P) Write arule-based expert system to choose a good way to graphically display data. Suppose as input
this program loads afile of data facts of one argument, a list representing properties of some object. Suppose
the output is a recommendation about whether to use bar graphs, pie graphs, two-dimensional plots, summary
tables, etc. for particular positions in the datalist. For instance, a recommendation might be to plot all the first
items of datalists asan X coordinate against second itemsasaY coordinate, and to draw a bar graph showing
all the first items against third items. These graphing recommendations will need to pick subsidiary information
about ranges to be plotted, binning (what values get grouped together), approximate dimensions of the display,
extralines, unusual values (outliers) that have been left out, etc. Generally you can find some graphical display
for every pair of dataitem positions, but only some of these will be interesting and worth recommending.

I nterestingness can be defined in various ways, but should emphasize the unpredictability of the data: a nearly
straight line makes an uninteresting graph. It will be useful to define a number of processing predicates,
including a column predicate that makes alist of al the datavaluesin position K in the data list, and predicate
that applies a standard statistical test (look one up in a statistics book) to seeif the valuesin two such columns
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are associated or correlated. Y ou may want to consult a book giving recommendations for graphical display.

7-11. (A) The definitions of the forall and doall predicates both use the built-in Prolog predicate call, which
takes a predicate expression as argument and queriesit. (Thisis useful because the argument can be a variable
bound within a program.) Use call to implement the following:

(@) or (P,Q) which succeeds whenever querying either P or Q succeeds
(b) if(P,Q,R) which succeeds whenever P succeeds then Q succeeds, or if P failsthen R succeeds

(c) case(P,N,L) which succeeds whenever predicate expression number N of list L succeeds, where N is bound
by executing predicate expression P (that isN must be avariablein P that is bound by P)

7-12. (H,P) Implement the other hybrid of backward and forward chaining mentioned in Section 6.4, the hybrid
that alternates between forward and backward chaining. Show your program working on some sample rules and
facts.

7-13. (P) Implement meta-rules for pure forward chaining. Use a prefer predicate like the one used for rule-
cycle hybrid meta-rules.

7-14. (P) Consider meta-rules with pure forward chaining (the implementation is considered in Exercise 7-13).
Assume there are no variables in the rules.

(a) Write ameta-rule to prevent the same conclusion from being reached twice.

(b) Write ameta-rule, and alittle additional code to that written for Exercise 7-13, to prevent the same rule from
being used twicein arow.

7-15. Convert the appliance-diagnosis program to a decision lattice. Try to minimize the number of questions
required to a user.

7-16. (H,P,G) Write arule-based system that, given the syllables of an English sentence in phonemic
representation, figures out which syllables to stress. Such stressrules are relatively straightforward and can be
found in many linguistics books. Y ou'll need list-processing techniques from Chapter 5, and you must worry
about the order the stress rules are applied.

7-17. (P) Write a program to give simple navigation commands to a mobile robot moving across a battlefield.
Assume the battlefield is divided into squares, designated by integer X and Y coordinates ranging from X=0 to
X=50 and from Y =0 to Y =50; the robot is not allowed to leave this area. The robot starts at |ocation somewhere
onthe Y=0lineanditistrying to get to location (50,30). There are impassible bomb craters at (20,10), (10,25),
and (20,40), all circles of radius 2. There is an impassible ravine extending along the Y =30 line from X=10to
X=50.

The robot begins moving at time 0. The rule-based system to control it should order one of only four actions:
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move one unit north, move one unit south, move one unit east, and move one unit west. Each move takes one
unit of time. At time T=15 a bomb crater appears 4 units north of the robot; at T=25 a crater appears 3 units
west; at T=30 a crater appears 3 units east; and at T=40 a crater appears 4 units east.

The robot should not be able to "see" craters and ravines until it isjust at their edges. But suppose the robot
knows the coordinates of the goal location and its current coordinates at all times, so it always knows where it
Is. Try to specify the robot's actions in general terms, that will work for any configuration of craters and ravines.

Try your program out with the robot starting at various locations along Y =0.

7-18. (E) Like most rule-based expert systems, our appliance diagnosis system doesn't reason about causal
chains. In other words, it knows that a certain pattern of symptoms signal an underlying cause, but it doesn't
know why the cause |eads to the symptoms, the exact chains of cause and effect that explain each particular
symptom. For instance, it knows that when a device isn't working at al, there might be a short in the cord; but it
doesn't know the reason is that a short causes the resistance of a cord to be significantly lowered, causing alot
of electricity to flow into the cord, causing alot of electricity to flow through afuse, causing the metal
conductor in the fuse to heat up, causing it to melt, causing the metal to flow, causing it to break the electrical
connection, causing no electricity to go to the appliance cord, causing the appliance to not work at all. For what
kinds of appliances and diagnosis circumstances could this lack of causal-chain reasoning be a problem? (We
should use a quite different rule-based system then.) In what sense can the appliance expert system of this
chapter be seen as a simplification of a more general kind of expert system?

Go to book index
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Representing uncertainty in rule-based systems

Numbers are important in most areas of engineering and science. In artificial intelligence, one use of numbersisto quantify the
degree to which we are certain about something, so we can rank our deductions. This lets us model the world more
realisticaly. Well show how these kinds of nhumbers can be easily added to rule-based systemsin Prolog, and suggest ways--
conservative, middle-of-the-road, and liberal--to manipulate them.

Probabilities in rules

Rulesin rule-based systems have so far been absolute: when things are absolutely true on the right side of arule, then the thing
on the left side is absolutely true. But in many real-world situations, inferences or even facts are to some degree uncertain or
probabilistic. Thisis particularly true when facts in a rule-based system represent evidence, and rules represent hunches
(hypotheses) explaining the evidence. Examples are the diagnosis rules for a car-repair expert system; many diagnoses can't be
certain unless the car is taken apart, but suggestive evidence can be found from the way the car behaves.

Mathematicians have for along time used probabilities to model degrees of uncertainty in the world. A probability isthe
fraction of the time we expect something will be true. Other numbers are used in artificial intelligence to represent uncertainty,
but probabilities came first, so we'll prefer them here.

Aswe mentioned in Section 2.10, we can add probabilities as an last argument to Prolog facts. So to say a battery in a
randomly picked car is dead 3% of the time, we can put the fact

battery(dead, 0. 03).

in the Prolog database | REFERENCE 1. .FS | REFERENCE 1| Some Prolog implementations don't allow real (decimal)
numbers. If yours doesn't, you can represent probabilities by the integer closest to a million times the probability. So 200,000
would represent a probability of 0.2. You'll also have to modify the formulas given later in this chapter so the math will work
right. Use 1,000,000 wherever 1 occurs in formulas, and divide all products by 1,000,000, and multiply al two-number
guotients by 1,000,000. Addition and subtraction don't have to be modified.

Also, many Prolog implementations that do handle decimal numbers require digits both before and after the decimal point, so
you have to say "0.03" instead of just ".03". Wel'll do that in this book. .FE We can modify predicate expressionsin rules
similarly. For instance, if 20% of the time when the car won't start it is true the battery is dead, we could write:

battery(dead, 0.2) :- ignition(wont_start,1.0).

We can write different rules for inference of the same fact from different sources of evidence, each with its own probability. So
if 50% of the time when the radio won't play the battery is dead:

battery(dead, 0.5) :- radi o(wont_play, 1.0).

So if we want to reason about whether the battery is dead, we should gather all relevant rules and facts. Then somehow we
must combine the probabilities from facts and successful rulesto get a cumulative probability that the battery is dead. Thiswe
call the or-combination issue with probabilities, since you can think of rules with the same | eft-side predicate name as an
implicit "or".

A second issue isthat rules can be for a different reason than facts. Consider the preceding rule for the likelihood the battery is
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dead when the ignition won't start. Suppose we are not sure the ignition won't start--we've tried it afew times, and the car
didn't seem to respond. (It might respond if we waited an hour to try it, which would be true if the engine is flooded.) What
now is our probability that the battery is dead? It must be less than 0.2, because the new conditions worsen the implication, but
how much less? It seems the 0.2 must be combined with the ignition-dead probability. We will call thisthe rule versus
evidence probabilities issue.

A third issue is that rules can have "and"s of several predicate expressions on their right sides, and if each has a probability, we
must somehow combine those numbers--what we call the and-combination issue. Note this is quite different from the "or-
combination”, because weak evidence that any "and"ed expression is satisfied means weak evidence that the whole "and" is
satisfied (achain is as strong as its weakest link).

Probabilities often arise in artificial intelligence applications when reasoning backward. For instance, if the battery of acar is
dead, the car will not start; and if thereis a short in the electrical system of acar, the car will not start. Those things are
absolutely certain. But if acar will not start, then we must reason backward to figure the likelihood that the battery is dead; we
can't be completely certain because another cause like a short in the electrical system could also explain the failure to start. But
reasoning backward from effects to causes has many important applications, so we must do it if we want computers to behave
intelligently.

Some rules with probabilities

To show the flexibility of probabilitiesin rules, here are some examples. Suppose 6 times out of 10 when the car won't start,
the battery is dead. Then:

battery(dead, 0.6) :- ignition(wont_start,1.0).

The 0.6 here is a conditional probability, a probability something happens supposing something else happens. But we could
also treat the right-side expression as something that couldn't possibly be uncertain, something that is either true or false. Then
we could write the rule with a probability only on the left side:

battery(dead, 0.6) :- ignition(wont_start).

Now suppose the car won't start, and we measure the battery voltage with a voltmeter. Suppose we're not skilled at using a
voltmeter. The following rule would apply:

battery(dead, P) :- voltneter(battery termnals, abnornal, P).

This says that the battery is dead with the same probability that the voltmeter measurement is outside the normal range. Not
being skilled, we might not be measuring the voltage properly (the terminals might be reversed, or the range setting on the
voltmeter might be too low or too high, causing usto incorrectly read no voltage). So the uncertainty of the voltmeter
measurement is reflected in the conclusion. Note if P is 1 (if we are completely sure of our voltmeter measurement) then P is 1
for the battery being dead too.

Suppose we want to rewrite the preceding rule to ignore very weak evidence for the conclusion; thiswill help avoid
unnecessary computation on insignificant things. We can put in an arithmetic comparison:

battery(dead, P) :- voltneter(battery_ term nals, abnormal, P),
P> 0.1

Thissaysthat if the voltmeter reading is outside the normal range with probability P, and P is more than 0.1, then the battery is
dead with that same probability P.

http://www.cs.nps.navy.mil/people/faculty/rowe/book/chap8.html (2 of 20) [23/04/2002 17:38:59]



http://www.cs.nps.navy.mil/peopl e/faculty/rowe/book/chap8.html

Now consider what to do when the evidence on the right side of arule can be certain or uncertain, but when it is certain it does
not imply certainty of the left side. This can happen when the right side is a conclusion itself. For instance:

battery(dead,P) :- electrical _problem(P2), Pis P2 * 0.5.

This says that half the time when the car has an electrical problem, the battery is dead. Mathematically, it takes the probability
of an electrical problem and multipliesit by 0.5 to get the probability of the battery being dead.

Finally, here's an example of evidence combination. If thereis an electrical problem and battery is old, then we suspect (with
maybe a probability of 0.9, because evidence is stronger than for the preceding rule) that the battery is dead. But suppose we're
not sure of either contributing factor, the problem being electrical or that the battery being old. We must somehow decrease the
0.9 by the uncertainty of the factors. One simple way (the probabilistic-independence-assumption method) isto take the
product of 0.9 and the probabilities of the two factors, like this:

battery(dead,P) :- electrical _problenmP2), age(battery,old, P3),
Pis P2 * P3 * 0.09.

So if we believe there's an electrical problem with probability 0.7, and we're 80% sure the battery is old, an estimate of the
probability that the battery isdead is|0.7 * 0.8 * 0.9 = 0.504|.

All probabilities are estimates. We'll treat our probabilities as rough indications of certainty, mainly important relative to one
another. We won't insist that all our probabilities of a certain kind sum to 1, because rarely can we feel we've covered all
possibilities. For instance, ainfinity of things can go wrong with your car, and it wouldn't be reasonable to compute the
probability that your car won't start because mutant rats have eaten the engine. (We won't even insist that probabilities of a
certain kind must sum to no more than 1, because it's hard to analyze the amount of overlap among probabilities.)

Combining evidence assuming statistical independence

The last section shows that combining probabilities in rule-based systemsis very important. Surprisingly, thereis no fully
general mathematical approach to combining; the problem can be proved mathematically intractable. But we can give some
formulas that hold under particular assumptions, and most artificial-intelligence work follows this route. Alas, people make
frequent mistakes with probabilities, as shown by experiments, so it's a bad idea to look for guidance from the way people
reason.

The easiest assumption we could make is that the different forms of evidence are probabilistically independent. That is,
occurrence of one kind of evidence does not make another kind any more or less likely. This situation often happens when the
evidence comes by very different reasoning methods, and can't "interact”. For instance, suppose we are writing an expert
system to give advice about stock-market investments. We might have two rules:

1. If aquarterly report on economic indicators today says that interest rates will go up this year, then the stock
market index will go down tomorrow with probability 0.7.

2. If the stock market index has gone up for three straight days, it will go down tomorrow with probability 0.4.

These two rules reflect quite different phenomena. So the success of the first rule won't make us believe the second is any more
likely to succeed on the same day, and vice versa. (Maybe there is alittle bit of influence--a stock market going down alot
might indirectly cause interest rates to go up--but the connection is pretty weak.) That's what we mean by statistical
independence.
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When statistical independence applies, probability theory says the probability of both of two uncertain events occurring is the
product of the probabilities of each event occurring individually. In generad, if events |A, B, C, ...| are statistically independent,
then in mathematical notation

p left [ A "and" B "and" CcC "and" ... right ]
=p(A)p(B)p(C)

where |p (A )| means "probability of event A", etc. This formula defines and-combination of the probabilities of the events
with the assumption of probabilistic independence.

Asfor "or"s (unions) of eventsinstead of "and"s (intersections), consider the Venn diagramin Figure 8-1. Let regions
represent events, so areas of regions represent probabilities, and the area of region A is [p(A)|. Then the area of the region
representing the "or" of A and B isthe area of A plusthat area of B, minus the areain common between both A and B (we
counted the areain common twice, hence we must subtract it out once). So since areas correspond to probabilities:

p(A "or" B)=p(A)+p(B)-p(A "and" B)

That last formula applies to any events. But when the independence assumption holds, we can think of the Venn diagrams as
being drawn in a special way, so that events A and B correspond not to circles but to rectangular regions that cross at right
angles. See the top diagram in Figure 8-2. Here the area of the whole square (representing the universe or al possible events) is
1, and the probabilities of A and B are each proportional to a distance along the side of the square. So the area of the upper left
subrectangleis the probability |p ( A "and" B )|, and the area of arectangleisitslength timesitswidth, oris|p (A ) p(B)|.
Hence substituting in the preceding equation, we get the formulafor "or-combination” of two probabilities with the
independence assumption:

p(A "or" B)=p(A)+p(B)-p(A)p(B)

We can generalize thisto the "or" of three events:

p(A "or" B "or" C)=p(A)+p(B +p(C)-p(A "and B
-p( A "and" C) -p (B "and" C) +p (A "and" B "and" C)
=p(A)+p(B)+p(C)-p(A)p(B)-p(A)pP(C)
-p(B)p(C)+p(A)p(B)pP(C)

Using mathematics we can prove the general formulafor the "or-combination™ of a set of probabilities assuming probabilistic
independence:

p left [ A "or" B "or" c "or" ... right ] =
1-[(1-p(CA))(C2-p(B))(1-p(CC)) ... 1]

Prolog implementation of independence-assumption "and-combination”

We can define a predicate that implements the preceding independence-assumption "and-combination” formula. It will take
two arguments: an input list of probabilities, and an output number for the combined probability.

i ndep_andconbi ne([P], P).
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i ndep_andconbi ne([ P| PL],Ptotal) :- indep_andconbi ne(PL,P2), Ptotal is P2 * P.

Wejust call this predicate as the last thing on the right side of rules, to combine the "and"ed probabilitiesin arule. If we had a
rule without probabilities like this:

f :- a, b, c.
we would turn it into arule with probabilities like this:
f(P) :- a(Pl), b(P2), c(P3), indep_andconbine([Pl, P2, P3],P).

That addresses the third issue discussed in Section 8.1. Interestingly, indep_andcombine can also address the second issue
discussed in Section 8.1, that of modeling rule strengths. Suppose we have arule:

g(P) :- d(P1), e(P2), indep_andconbine([Pl, P2],P).

Theindep_andcombine handles uncertainty of d and e, but the rule itself may be uncertain, meaning that the conclusion g has
aprobability lessthan 1 even when P1 and P2 are both 1. We could characterize this rule uncertainty itself with a probability,
the probability that the rule succeeds given complete certainty of all terms"and"ed on itsright side. If this probability were 0.7
for instance, we could rewrite it:

g(P) :- d(P1), e(P2), indep_andconbine([Pl,P2,0.7],P).

In other words, rule uncertainty can be thought of as a"hidden" "and"ed predicate expression) with an associated probability.

Here's an example. Suppose we have the following rule and facts:

f(P) :- a(Pl), b, c(P2), indep_andconbine([P1l, P2,0.8],P).
a(0.7).

b.

c(0.95).

Then for the query

?- f(X).

P1 will be bound to 0.7, and P2 to 0.95. Predicate indep_andcombine computes |0.7 * 0.95* 0.8 = 0.537|, and P is bound to
that; so that's X, the total probability of predicate f.

For rulesthat refer only to things absolutely true and false, "and-combination” is unnecessary. The rule-strength probability
need only be on the left side, as for instance:

f(0.7) :- a, b, c.
Prolog implementation of independence-assumption "or-combination”

The remaining issue discussed in Section 8.1 was "or-combination™ of probabilities. Independence-assumption "or-
combination” can be defined analogously to independence-assumption "and-combination” but using the last formulain Section
8.3
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i ndep_or conbi ne([P], P).
i ndep_or conbi ne([P| PL], Ptotal) :- indep_orconbi ne(PL, P2),
Ptotal is 1 - ( (1-P) * (1-P2) ).

"Or-combination” is needed when we have multiple evidence for the truth of predicate f, as for instance:

f(0.5) :- a.
f(0.7) :- b, c.
f(0.8) :- d, not(e).

"Or-combination” is more awkward than "and-combination” because we must use a new predicate name to represent the
combination | REFERENCE 2|. So for the preceding example we must define something like f_overall that represents the
cumulative likelihood of f. This can use a special built-in predicate called bagof, used this way:

f _overall (P) :- bagof (P2,f(P2),PL), indep_orconbine(PL,P).

WEe'll explain this bagof predicate more formally in Section 10.6. For now we'll note that bagof has three arguments: a variable
(an input), a predicate expression containing that variable (an input), and alist of all valuesto which the variablein the
expression can successfully be bound (an output). So the bagof saysto make alist PL of all the P2 such that f(P2) succeeds. If
the argument to f represents the probability of event f, the list PL will contain all the probabilities found for the predicate f by
every possible rules and fact. These can be combined with the indep_orcombine | REFERENCE 2|. .FS | REFERENCE 2| An
aternative simpler implementation of indep_orcombine is possible in many dialects of Prolog with the "univ" feature (see
Section 7.14) that converts from lists to predicate expressions, symbolized by "=..", where the left side is an expression and the
right side isits component list of symbols. It's used like this: new_indep_orcombine(F,P) :- Pred =.. [F,P2],
bagof(P2,Pred,PL), indep_orcombine(PL ,P). .FE

As an example, suppose we have these rules and facts:

9(0.7) :- a.

g(P) :- b(P1), c(P2), indep_andconbine([Pl, P2,0.9],P).
9(0.3) :- a, d.

a.

b(0.8).

c(0.9).

d.

Then to combine evidence for the g predicate we need:
total _g(P) :- bagof (P2,g(P2),PL), indep_orconbine(PL,P).
and to use it we must query:

?- total _g(Xx).

All three g rules will succeed with these facts, and P in the second g rule will be bound to [0.8* 0.9* 0.9 =0.648|. SOPL in
the total_g rule will be bound to [0.7,0.648,0.3]. Now we must call onindep_orcombine. |1-((1-0.648)* (1-03))=1-
0.352* 0.7 =0.7536],and [L- ((1-0.7) * (1-0.7536) ) = 1 - 0.3 * 0.2464 = 0.92608|. Hence the argument P to total_g will
be bound to 0.92608, and henceto X, the total probability that g istrue.

The conservative approach
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Independence when combining probabilities is a strong assumption. It does not hold when one event causes another, or when
two events are both caused by some other event. For instance with a small appliance, atotally nonfunctioning device suggests
an electrical problem, and afrayed cord suggests an electrical problem. This could be represented as:

el ectrical _problen(0.5) :- doesnt_work.
el ectrical _problen(0.6) :- frayed_cord.

If both rules succeed, the independence-assumption probability of an electrical problem is 0.8. But that's too high, because the
cord problem could explain the not-working observation: the cord being frayed could cause the device not to work. So the true
combined probability should be closer to 0.6, the number in the second rule.

One approach when independence does not hold is to be very conservative, very careful not to overestimate the cumulative
probability. This conservative approach is sometimes called a fuzzy set approach, actually it is more general than what is called
"fuzzy set theory"”, representing a mathematically provable lower bound. Consider a " conservative orcombine”. Whatever the
total probability for some event with multiple positive evidence, it must be no worse than the probability of the strongest
evidence: positive evidence shouldn't ever disconfirm other positive evidence. So we could define a " conservative orcombine"
to operate on probability listsin place of indep_or combine, to use whenever independence clearly doesn't hold between the
probabilities:

con_or conbi ne(PL, P) :- max(PL,P).

max([P], P).

max([ P| PL],P) :- max(PL,P2), P > P2.
max([ P| PL], P2) :- max(PL,P2), not(P > P2).

The max definition is from Section 5.5. The middle diagram of Figure 8-2 isthe Venn diagram for the "conservative-or" case.

For a corresponding "conservative andcombine”, we could just give "0"--that's always plenty conservative. But if the "and"ed
probabilities are all large, we can prove a nonzero value. Consider the two probabilities 0.7 and 0.8 for two events. 30% of the
time the first event must be false. That 80% for the second event can't al "fit" into 30%; only part of it can, with another 50%
left over. So at least 50% of the time both events must occur; i.e., the minimum probability is 0.5.

In generd, the conservative valuefor |p (A "and" B) | is

maxfunction ( p( A) +p(B) -1, 0)

where "maxfunction” is a mathematical function having avalue (not a predicate like the previous max), and its value is the
larger of its two arguments. We will define:

The value of maxfunction(X,Y) isthe larger of the two numbers X and Y,
The value of minfunction(X,Y) isthe smaller of the two numbers X and Y.

To generalize the "and" formulato any number of "and"ed expressions, we can define:
con_andconbi ne([P], P).
con_andconbi ne([P] PL],0) :- con_andconbi ne(PL,P2), P + P2 < 1.0.
con_andconbi ne([P| PL], Ptotal ) :- con_andconbi ne(PL, P2),

P3 is P+P2, not(P3<1.0), Ptotal is P + P2 - 1.0.

The bottom diagram in Figure 8-2 is the Venn diagram for the conservative_and case. So the diagram for conservative "or" is
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different from the diagram for conservative "and". In general, you should use the conservative "or" when there are strong
positive correl ations between evidence, and the conservative "and" when there are strong negative correlations.

To illustrate, let's use the same example of the last section but substitute in con_orcombine and con_andcombine:

total _g(P) :- bagof(P2,g(P2),PL), con_orconbi ne(PL, P).
9(0.7) :- a.

g(P) :- b(P1), c(P2), con_andconbi ne([P1,P2,0.9],P).
g(0.3) :- a, d.

a.

b(0.8).

c(0.9).

d.

The second g rule bindsitsPto [0.8+ (0.9+0.9-1)-1=0.6]. Then PL is bound to [0.7,0.6,0.3], and P in total_g isbound to
0.7.

Note we don't have to pick the independence-assumption or conservative approach exclusively in arule-based system. We can
choose one in each situation based on our analysis of appropriateness.

The conservative "or-combination” is particularly useful for handling prior (or a priori) probabilities. These are "starting"
probabilities for the likelihood of an event on general grounds. They are usually numbers close to 0, and they can be expressed
in the Prolog database as facts (instead of rules) with probabilities. For instance, checking under the hood of a car for frayed
wiresisalot of work, so an expert system for auto diagnosis might first try to diagnose an electrical problem without asking

for such an inspection, using an "apriori" probability of 0.01 of any wire being frayed. The independence assumption is a poor
idea for combining a priori probabilities because they represent a summary of many sources of evidence.

The liberal approach and others

There's also aliberal approach: compute the maximum probability consistent with the evidence. Thisisn't as useful asthe
"conservative" approach, but applies for "and"s whenever one piece of evidence implies all the others, and appliesfor "or"s
whenever pieces of evidence are digoint (i.e., prove the same conclusion is ways that cannot hold simultaneously). Liberal
formulas can be derived from the conservative formulas by relating "and" and "or", as with the formula for two variables:

p( A "or" B) =p(A)+p(B)-p(A "and" B)
which can also be written
p( A "and" B) =p(A)+p(B)-p(A "or" B)

Since|p (A )| and |p ( B )| are known, the maximum value of the first formula occurs when |p ( A "and" B)| has a minimum,
and the maximum of the second formula occurs when |p ( A "or" B)| has a minimum (note the important minus signs). These
needed minima are given the conservative formulas. So the liberal bound on two-argument "or"sis

p(A) +p(B) - mxfunction ( p( A) +p(B) -1, 0)
= - maxfunction ( -1, - p( A) - p(B) ) =mnfunction ( 1, p( A) +p( B) )

and the liberal bound on "and"sis
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p(A) +p(B) - mxfunction ( p( A) , p( B) )
= - maxfunction ( - p( B) , - p( A) ) =mnfunction ( p( A) , p( B))
To generalize, the liberal approach for "and-combination” is the minimum of the probabilities:

i b_andconbi ne(PL,P) :- m n(PL, P).
mn([X],X).

mn([XL],X :- mn(L, X2), X < X2.
mn([ X L], X2) :- mn(L, X2), not(X < X2).

(The min isjust like the max of Sections 5.5 and 8.6.) Similarly, the general "or-combination” is the sum of the probabilities,
provided this number is not greater than 1:

l'ib_orconbine(PL,1.0) :- sumup(PL,P), P > 1.0.

i b_orconbine(PL,P) :- sumup(PL,P), not(P > 1.0).
sumup([P], P).

sumup([P| PL],Ptotal) :- sunmup(PL,P2), Ptotal is P + P2.

The middle diagram in Figure 8-2 shows the liberal "and" case graphically, and the bottom diagram in Figure 8-2 illustrates the
liberal "or". That is, they're the situations for the conservative "and" and "or" reversed. In general, you should use the liberal
"and" when there are strong positive correlations between evidence, and the liberal "or" when there are strong negative
correlations--just the opposite of the advice for the conservative formulas.

Consider the same example we have used before, but with lib_orcombine and lib_andcombine:

total _g(P) :- bagof(P2,g(P2),PL), lib_orconbine(PL,P).
g(0.7) :- a.

g(P) :- b(P1), c(P2), |lib_andconbine([P1l,P2,0.9],P).
9(0.3) :- a, d.

a.

b(0.8).

c(0.9).

d.

Now P in the second g rule will be bound to 0.8, the minimum of [0.8,0.9,0.9]. Then PL isbound to[0.7,0.8,0.3], and P in
total_gisbound to 1.0.

Again, we can use the liberal approach wherever we like in arule-based system, and the conservative and independence-
assumption approaches elsewhere in the same system too. The formulas are summarized in Figure 8-3. (All the formulas are
associative, so we can get the n-item formula from the two-item formula.) If we aren't sure any is best, we can take a weighted
average. Or we could invent our own formula. But we must be careful, because not all formulas make sense. Reasonable
criteriaare (1) smoothness, that the formula never makes abrupt jumpsin value as input probabilities smoothly vary; (2)
consistency, that it never gives values outside the range between the conservative and libera values; (3) commutativity, that
the order of binary combination doesn't matter; and (4) associativity, that the formula gives the same result no matter how the
expressions are grouped (for example, combining |p sub 1| with the combination of |p sub 2| and |p sub 3| must be the same as
combining the combination of |p sub 1| and |p sub 2| with |p sub 3)).

Negation and probabilities
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Conditions in rules that something not be true cause problems for probabilities. For instance:

a:- b, not(c).

If a b, and c are all uncertain and the rule itself has a certainty of 0.7, it won't do to just add extra arguments like this:
a(P) :- b(Pl1l), not(c(P2)), indep_andconbine([Pl,P2,0.7],P).

because if there's any evidence for ¢, no matter how weak, the rule will fail. We want instead for weak evidence for c to
decrease the probability of ain asmall way. The way to handle thisisto note the probability of something being falseis one
minus the probability of it being true. So instead:

a(P) :- b(P1), c(P2), inverse(P2, NegP2), indep_andconbi ne([P1, NegP2,0.7],P).
whereinverseisdefined as:
inverse(X,IX) :- IXis 1- X

So we shouldn't use nots when probabilities are involved, but use this predicate inver se on the resulting probabilities. (But you
must still be careful to remember that p(0.0) won't match not(p).)

Some artificial-intelligence systems don't follow this approach, however. They try to be more general by reasoning separately
about events and their negations. They collect evidence for an event, and combine it with probability combination rules, but
they aso collect evidence against an event and combine it separately. Then they combine these two cumulative probabilities
somehow to get an overall likelihood measure. A simple way used in many expert systemsis to take the difference of the
probability for something and the probability against something. This number ranges from 1.0 (complete certainty of truth)
through 0.0 (complete indecision) to -1.0 (complete certainty of falsity).

An example: fixing televisions

Now we'll give an example of asimple rule-based expert system using probabilities, for diagnosis of malfunctioning
equipment. Unfortunately, most expert systems (like most artificial intelligence programs) must be big to do anything
worthwhile; otherwise, human beings could do the job fine without them. So to avoid burdening you with an example ten
pages long, we must pick something smple and not very useful. So here's an example of the few things wrong with a
television set that you can fix yourself (television sets use high voltages so most malfunctions should be treated by trained
service personnel.)

When atelevision set is working improperly, one of two things may be improperly adjusted: the controls (knobs and switches)
or the receiver (antenna or cable). So let's write an expert system to estimate probabilities of those two things. We'll assume
these probabilities need not be very accurate, but their relative sizes provide arough guide to where things are wrong.

Consider why the knobs might be adjusted wrong on atelevision. If it is old and requires frequent adjustment, that could be a
reason. Similarly, if kids use your set, and they play with the knobs, that could be a reason too, as well as anything strange
you've done lately that required adjustment of the knobs (like taking a photograph of the television picture, requiring that the
brightness be turned up very high). Let'swrite the rules. If a set requires frequent readjusting, then it's quite reasonable that the
set is maladjusted today--let's say 50% sure:

mal adj ust ed(0.5) :- askif(frequent_adjustnents_needed).

(The askif predicate was defined in Section 7.3; it types out a question for the user, and checks if the response is positive or
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negative.) For recent unusual usage of the television, it matters how you define "unusual”. But let's say 50% to be reasonable,
sotheruleis:

mal adj ust ed(0.5) :- askif(recent_unusual _usage).

Therulefor children must insist both that children hang around your house and that they would be inclined to mess around
with the knobs on your television. That's the "and" of two conditions, so we need an "andcombine". When both conditions
hold, it's quite likely the set is maladjusted, so we can give thisrule arule strength of 0.9. So theruleis:

mal adj usted(P) :- askif(children_present(P1)),
aski f(children_tw ddl e_knobs(P2)), andconbi ne([P1, P2,0.9],P).

Then to get the cumulative probability the set was recently adjusted, we need an orcombine:
recently_ adjusted(P) :- bagof (P2, mal adj usted(P2), PL), orconbi ne(PL, P).

Thislast predicate just summarizes predisposing evidence for a set maladjustment, but it doesn't incorporate the best evidence
at all, observations of the television set. In other words, two major factors, past and present, must be combined. This could be
either an "andcombine” or an "orcombine", but "andcombine" seems preferable because neither factor here implies strongly the
diagnosis; it's only when both occur together that evidence is strong. That suggests:

di agnosi s(' knobs on set require adjustnent',P) :-
recently adjusted(P2), askif(operation(abnornal)),
andconbi ne([ P2, 0.8],P).

(Remember, single quotation marks (') indicate character strings in Prolog; everything between two single quotation marks,
including spaces, istreated as a unit.)

If there is some uncertainty about whether the television's behavior is normal, we could include a probability as a second
argument to the oper ation predicate, combining it in the "andcombine" too. Or we could characterize the operation by many
different words. For instance:

di agnosi s(' knobs on set require adjustnment',P) :-
recently adjusted(P2), askif(operation(nediocre)),
andconbi ne([ P2,0.5],P).

So we have athree-level expert system: an "and" of two expressions, one of which isan "or" of three expressions, one of
which inturnisan "and" of two expressions. It's true we could simplify thisinto two levels by the laws of logic (see Appendix
A), rewriting everything in digunctive normal form or conjunctive normal form (see Appendix A), but thisisn't agood idea
with rule-based systems. For one thing, extralevelslet you group related concepts together to make the rule-based system
easier to understand; in anormal form, widely different predicates can be thrown together. Grouping related terms together
also enables easier determination of probability values and easier choice of probability combination methods; it's difficult to
pick a good combination method for twenty terms, since some of the "and"ed expressions must be considerably more related
than others. Many-level rule-based systems also allow easier design and debugging, because they give lots of places to put
checkpoints and tracing facilities.

Now let'sturn to the other kind of television diagnosis we can make, that the antenna or cable connection to the television set
isfaulty. For this conclusion we will use the same diagnosis, and oper ation predicates as before. But we'll need a new
predicate to summarize contributing factors to the faultiness of the antenna or cable connection, overall_source _problems:
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source_probl ens(0.8) :- askif(television(new)).

source_probl ens(0.95) :- askif(antenna(new)).

source_probl ens(0.95) :- askif(cable(new)).
source_problens(0.3) :- askif(recent _furniture_rearrangenent).
overal | _source_problens(P) :- bagof (P2, source_probl ens(P2), PL),

or conbi ne( PL, P).

L et's assume that no one has both an antenna and a cable connection (or if they do, only one of them is operating). Well use a
sour ce_type predicate to indicate whether the set up is an antenna or a cable. Then we have two rules for the two diagnoses:

di agnosi s(' antenna connection is faulty',P) :-
aski f (source_type(antenna)), askif(operation(abnormal)),
overal | _source_probl ens(P).

di agnosi s(' cabl e connection is faulty',P) :-
aski f (source_type(cable)), askif(operation(abnormal)),
overal | _source_probl ens(P).

So that's our simple expert system. To use it, we query
?- diagnosi s(D, P).

And each answer that the Prolog interpreter finds to the query will bind D to a string representing a diagnosis, and bind P to
the corresponding probability. To find all diagnoses with nonzero probabilities, we can repeatedly type semicolons.

Graphical representation of probabilities in rule-based systems

The logic-gate representation of an and-or-not lattice (see Section 6.10) is a useful graphical notation for simple rule-based
systems. It can be used for rules with probabilities too. Associate every "andcombine" and "orcombine" with alogic gate in the
representation. Indicate rule strengths next to their corresponding logic gates. For rules with only one expression on their right
side, use special triangle gates (attenuators) with one input and one output. Then each line has an associated probability,
computed by proceeding from the inputs through the network, applying the proper formula at each gate. Figure 8-4 shows the
and-or-not lattice for the example of the last section.

Getting probabilities from statistics

There's amore fundamental problem with probabilities than combining them, however: getting them in the first place. If
probabilities are markedly incorrect, reasoning based on them can't be trusted. But getting good probabilities is often the
hardest problem in building a rule-based system. Even when programmers can easily decide what the predicates should be,
what things rules should cover, and how rules should be structured, they often have trouble estimating probabilities because it's
hard to tell when an estimate is wrong. Two approaches are used: getting probabilities from statistics on data, and getting
probabilities from human "experts".

Since people reason poorly about uncertainty, the first approach seems preferable. Often we have alot of routinely-collected
data about the phenomena in arule-based system, as when our rule-based system further automates human capabilities already
partly automated. We can approximate needed probabilities by frequency ratios in the data. For instance, we can approximate
rule-strength probabilities by the ratio of the number of times the left side of arule was satisfied to the number of times the
right side was satisfied.

As an example, consider the repair of airplanes. They are expensive, so an organization that owns many of them must keep
detailed repair and maintenance records to ensure quality work, to better allocate resources, and to track down trendsin
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malfunctions. Most organizations today computerize these, recording observed malfunctions, their eventually inferred causes,
and what was done to fix them--just what we need to assign probabilities to an expert system for diagnosis. For instance, we
can count how many times the radar system failed, and how many of those times the widget component was faulty, and take
the ratio of the two countsto fill in <strength> in the rule:

faulty(w dget, <strength>) :- failed(radar).

However, approximating areal number (a probability) by the ratio of two integers can be hard, and the approximation is often
poor when the integers are small. Suppose some event happens with probability 0.001, and we have data for 2000 occurrences.
On the average we'll expect two eventsin those 2000, but the number could be 1, 0, 3, or 4 too, since the event is so rare.
According to probability theory, random sets of size N, drawn from an infinite population with fraction F of its members

possessing some property, will tend to show the same fraction F with standard error (standard deviation of this fraction)
approximately

sqrt { F(1- F) / N}

(using the binomial-distribution approximation). This says how good a probability estimate is; the larger this number, the
worse the estimate. As arule of thumb, if the preceding is the same or larger than F, the F fraction should not be trusted.

As an example, suppose something happens 7 times out of 20 possible times. Then |N = 20|, |F = 0.35|, and the standard error
by the formulais 0.105. Thisis significantly less than 0.35, so the probability estimate 0.35 looks OK.

Probabilities derived from others

If aprobability isimportant to our rule-based system, yet the associated standard error of approximation from datais large, we
may be able to better estimate the probability from other data. One way is Bayess Rule. Letting |p ( A given B )| represent the
probability of event A happening when event B also happens, we can say:

p (A given B)={p(A "and® B)} [/ { p(B)}
But switching A and B in that equation:
p(B given A)={p(A "and® B)} [/ { p(A)}

We can solve the second equation for |p ( A "and" B )|, and substitute in the first equation, obtaining the usual form of Bayes's
Rule:

p (A given B) ={p(B given A)*p(A)} [ {p(B)}
Thisis auseful when we have arule
a(P) :- b(P2), andconbi ne([P2, <strength>],P).

and we want to know what number to put for <strength>, the probability that a is true given that b is true. If we have enough
data to compute the reverse--the probability that b istrue given that a is true--then Bayes's Rule can use that number, together
with estimates of the overall probabilities of a and b, to give what we need. Thisis an especialy good idea when a causes b,
because then the reverse probability that b istrue given that ais true must be 1.0. For instance, a car absolutely will not start
when its battery is dead, so we can approximate the probability that the battery is dead when the car won't start by the ratio of:
the overall probability the battery is dead over the overall probability the car won't start.
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There are extensions of Bayes's Rule, for instance:

p ( A given ( B "and" C))={p( (B "and" C) gi ven A) *p( A)

}
/ { p( B "and" C) }

Another trick to get rule probabilitiesis to use the independence assumption in a special way. Suppose we have:
a(P) :- b(P1), c(P2), andconbi ne([P1l, P2, <strength>], P).

Now there may be few situations in the data in which both b and ¢ were true. But if there were many situations in which one of
b and c was true, then we could estimate the probabilities of a given b, and a given ¢, and take the "or-combination” of these
two numbers (yes, "or" not "and"; think about it) as an estimate of the rule strength needed. That is, we can precompile an
"orcombine".

Subjective probabilities

Even with these tricks we may not have enough data (or perhaps good enough data) to approximate probabilities very well.
Then we must guess probabilities ourselves, or preferably, ask a human expert in the task or domain of the rule-based system.
Thisisn't always easy: experts may be hard to find, or their time may be expensive, or they may not understand or feel
comfortable with arule formulation of their knowledge. But there may be no other choice.

Aswe've said, humans make many mistakes in probability estimation, as demonstrated by psychological experiments. One
simple way to make things easier is to let people quantify uncertainty on a different numeric scale than 0.0 to 1.0. For instance,
take degrees of certainty on ascale 0 to 100, and divide by 100 to get the probability. Better yet, do a nonlinear transformation
of the probability scale, for instance with odds defined as|p/ (1 - p)|. Odds range from O to positive infinity, so a probability
of 0.9 isodds of 9, aprobability of 0.5 is odds of 1, and a probability of 0.1 is odds of 0.111. The logarithm of the oddsis also
useful; it "flattens out” the curve more, and ranges from minus infinity to plusinfinity.

Something that also helps people is speaking of uncertainty nonnumerically. For instance, et them use the terms " certain®,
"amost certain”, "likely", "suggestive', "possible”, "not likely", and "impossible”. Each term may map to a probability--say
1.00 for "certain”, 0.99 for "amost certain”, 0.8 for "likely", 0.5 for "suggestive", 0.2 for "possible”, 0.05 for "not likely", and
0.0 for "impossible”. If thisisn't possible, perhaps different probabilities can be given for different contexts, so a"possible car
problem™ would be a 0.2 probability, but a"possible nuclear accident” would be 0.001 probability.

Maximum-entropy probabilities (*)

Bayes's Rule extends the utility of both statistics and subjective probability estimates. We can generalize this idea, to accept
arbitrary probabilities from the programmer--prior probabilities, conditional probabilities, and joint probabilities--and make
"reasonable guess' estimates of others, using some mathematics.

It can be shown mathematically that best guesses (based on certain postulates for guess desirability) are those that maximize
entropy, or minimize the information content, of probability assignments. Thisis a mathematical optimization problem, in
which we want to maximize

sumfrom{i=1} to mleft ( - p( Asubi ) log ( p( Asubi ) ) right )

for some mutually exclusive set of probabilities |p ( A subi )| that sumto 1, subject to given equality constraints in the form of

probabilities already known. Optimization problems like this can be attacked by many methods from operations research, and
computer packages are available. But they can take time since they usually iterate.
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Sometimes we don't need to iterate to find maximum-entropy probabilities, but we can use algebraic manipulations to get
formulas. Here's an example for those of you that know some calculus. Suppose we know the probabilities of two events A and
B, |p (A)|and |p ( B)|. Suppose we want to find the maximum-entropy probability for [x = p (A "and" B)| (i.e., we want to do
"and-combination” in a maximum-entropy way). Then there are four mutually exclusive probabilitiesinvolved: |p (A "and" B)
,P(Abar"and"B),p(AandB bar), p (A bar "and" B bar )|, where we use |A bar| to represent the exact opposite of A, so
IP(Abar)=1-p(A)| Then
B) =x , p ( A bar "and" B) =p(B) - x ,
"and" Bbar ) =p ( A) - X :

p ( A bar "and" Bbar ) =1-p( A) - p(B) +x

And the preceding summation formulafor the entropy is

- xlog ( x) - ( x)log(p(B)-x) -
(pCA)-x)I ) -
-(1-p(A)-p(B)+x)log(1l-p(A)-p(B) +x)

To find the maximum of this, we take the derivative with respect to x, and set thisto zero. Noting that the derivative of |y log (
y )| withrespecttoxis|(1+1log(y)) dy/dx |, weget:

o
o «Q
—~
©
~
>
~
1
X
~

log [ x (1 -p(A)-p(B)+x)/ (p(A)-

x

) (p(B)-x)] =0

\/+
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>
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©
~
w
N—r
I

x=p(A)p(B

Thisisjust the independence-assumption formula. So the formulawe justified intuitively in Section 8.3 has a deeper
justification. Formulas for more complicated situations can also be derived with the method.

Consistency (*)

Another problem with subjective probabilities (but also to alesser extent with data-derived probabilities) is that they can be
inconsistent (logically impossible) in a nonobvious way. This often happens when both a priori (unconditional) and conditional
probabilities are specified by people. We should therefore run checks on user-given probabilities before entering them into a
rule-based system.

As an example, note from the definition of conditional probability that
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0O<=p (A given B) p(B) =p(B given A)p(A) <=1
Hence

p(A)>p(A given B) p(B)

p (B given A) >p ( A given B) p( B)

p(B)>p(B given A)p(A)

p ( A given B) >>p (B given A) p( A)

SO we can catch some inconsistencies from inequalities.

Keywords:

probability

uncertainty

or - conbi nati on

and- conbi nati on

rule probability

concl usi on probability
i ndependence assunpti on
conservative assunption
i beral assunption
Bayes's rule

scal e transformati ons
maxi mum entropy esti mates

.SH Exercises
8-1. Assume:

1. The battery is defective with certainty 0.5 when a car won't start.

2. The battery is defective with certainty 0.8 when the radio is functioning and the radio won't play.
3. You are not sure if your radio is functioning--the probability is 0.9 that it is functioning.

4. Thismorning your car won't start and the radio won't play.

What is the cumulative probability that your battery is defective this morning? Combine evidence assuming independence of
probabilities.

8-2. Consider these rules (the arguments are all probabilities):
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a(P) :- b(P2), Pis P2 * 0.6.
a(P) :- c(P).

Suppose b is known to be absolutely certain, and ¢ is 80 percent certain.

(a) What is the cumulative probability of a using the independence assumption?
(b) What is the cumulative probability of a using the conservative assumption?
(c) What is the cumulative probability of a using the liberal assumption?

8-3. (R,A) Suppose we want to fill in the <prob1> and <prob2> probability valuesin the following two rules that infer aflat
tireon acar:

flat_tire(<probl>) :- car_steers_strangely.
flat_tire(<prob2>) :- just_ran_over_sonet hi ng.

(a) Suppose we have statistics that say:

-- In 200 situations in which the car steered strangely the tire was flat, out of 500 situations in which the car
steered strangely;

-- In 800 situations in which you just ran over something the tire was discovered to be flat, out of 1600 situations
in which you just ran over something;

-- A flat tire was observed in 1200 situations total.
Estimate <prob1> and <prob2> for these statistics.

(b) Suppose we also know that 70 times in which both the car steered strangely and you just ran over something the tire was
then found to be flat, out of 101 timesin which both those two things were observed. Which probability combination method
(or-combination) for the preceding two rulesis best confirmed here: conservative, independence-assumption, or liberal?

8-4. (A) Suppose you want to handle or-combination of uncertainties nonnumerically. Suppose the possible degrees of
uncertainty are "definitely"”, "probably", "probably not", and "definitely not".

(a) Suppose the "orcombine" function of any two of those four termsis defined by the table in Figure 8-5. Each row and
column represent a pair of values to be combined. Which of the numerical or-combination methods is this equivalent to:
conservative, independence-assumption, liberal, or something else?

(b) Suppose the "orcombine" function of any two of those four terms is defined by the table in Figure 8-6. Which of the
numerical or-combination methods is this equivaent to: conservative, independence-assumption, liberal, or something else?

(c) For the method of part (b), suppose you want to map "definitely", "probably”, "probably not", and "definitely not" into
probabilities. It makes sense to have "definitely" = 1.0 and "definitely not" = 0.0. Give probabilities for " probably" and
"probably not" consistent with the table in part (b). (There are an infinite number of answers.)

8-5. (A) Combination methods for probabilities use the Prolog is, which requires its arithmetic calculation to refer to only
bound variables. Consider a rule-based system that uses rules with probabilities and cal cul ates on those probabilities. Does the
directionality of is mean that one of either backward chaining or forward chaining isimpossible? Why?
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8-6. (R,A) Consider the following way of doing or-combination of probabilities in an expert system: the cumulative probability
isthe fraction of the contributing probabilities that are greater than 0.5. So for instance the cumulative probability for
contributing probabilities 0.3, 0.9, 0.66, 0.2, and 0.8 would be 0.6.

(a) Define a Prolog predicate new_or combine(PL ,P) that computes the cumulative probability P of alist PL using this
method.

(b) Give two magjor disadvantages of this method, disadvantages not shared by the three methods discussed in the chapter, and
explain why they are mgjor.

8-7. Suppose we have R rules concluding D diagnoses such that there are the same number of rules concluding each diagnosis,
R/ D|. Assume no intermediate predicates, have each diagnosis rules refer to facts. Suppose the probability of any rule
succeeding in arandom situation is P, and suppose this probability isindependent of the success or failure of other rules.

(a) How many rules will succeed for a situation on the average?
(b) How many diagnoses will succeed for a situation on the average?

8-8. (G) Write 10 or so Prolog rules to predict what the weather will be at 3 P.M. some day, reasoning at noon that day, using
probabilities as an additional argument to all predicates that have uncertainty. All rules should have aleft side of the form
predict(<weather >,<probability>), where <weather > is either sunny, partly cloudy, or cloudy. Choose a good evidence-
combination method.

Assume the following predicates are available as the basis for your reasoning at noon. (Try to define some intermediate
predicates based on these, which can then be combined to make predictions, to make things more interesting.)

current_west_view(<weather>): whether the given weather is viewable from a west-facing window right now.
The argument can be sunny, partly _cloudy, or cloudy.

current_east_view(<weather>): same for east-facing window.

raining(<degree>): whether it israining to that degree right now. The <degree> can be light, steady heavy,
and cloudbur st.

weather man_prediction(<weather>): whether the TV weatherman predicted that weather for 6 P.M. last night
a 11 P.M.

grandma_prediction(<weather>): whether Grandma predicted that weather this morning from how her joints
hurt.

grandma_memory: whether you remember anything Grandma said that morning.
radio_prediction(<weather>): the weather predicted right now on the local radio news station.
secretary _has radio: you don't have aradio, but the secretary down the hall might.
secretary_out_to_lunch: if they are out to lunch, the room islocked, and you can't get in.

8-9. (A,E) Consider the following argument: " Spending money on the lottery must be a good thing, because you constantly
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hear about people winning big bucks in the battery, in the newspapers and on television.”

() What isthe fallacy (reasoning error) here?

(b) What warning does thisillustrate for using probabilities in rule-based systems?

8-10. Most students are adults (18 years old or more). Most adults are employed. We could write:

adult (X, P) :- student(X P2), Pis P2 * 0.95.

enpl oyed(X,P) :- adult(X, P2), Pis P2 * 0.9.

Then if we knew that Joe was a student with complete certainty, these rules say that Joe is employed with 0.855 probability, a
clearly fallacious conclusion because most students don't work at all, as any professor will tell you. Thisfalacy isdueto a
simplification that we have made to make our analysis in the chapter easier.

(a) Show how the problem can be fixed by writing one rule as two.

(b) Suppose we consider this rule rewriting as awkward and we wish to fix things by just changing the probability combination
method. The previous method was independence-assumption combination. What happens to the probability of Joe being
employed when we use the conservative assumption?

(c) The conservative assumption does not give a reasonable answer either. How can we solve this problem in a reasonably
general way?

8-11. (E) (a) In English, double negatives don't always mean what you expect them to mean. Explain why "not unhappy" is
different from "happy".

(b) What warning does this suggest to the designer of a rule-based expert system using probabilities? In particular, for what
sorts of English words should a designer be careful ?

8-12. (P,G) Design a program to diagnose problems with cars. Many artificial intelligence applications involve diagnosis, and
automatic diagnostic aids really help. We pick cars because ailmost everybody knows something about them, and we don't need
to hire outside experts as with most expert systems. This diagnosis program should be usable by people who know virtually
nothing about cars; it should use nontechnical words and familiar concepts. For instance, it shouldn't expect that a user knows
what different sounds mean, and should try to describe sounds by analogies to everyday sounds.

An important part of the project will be the formal definition of concepts that may be concluded (e.g., "the car won't start”).
Another part will be enumeration of things a user could be expected to know; in particular, try to use knowledge of the history
of the car, what problems it has had in the past. Try not to get too technical; there are plenty of "common-sense" things about
cars, particularly for the body and interior of the passenger compartment. For instance, one cause of arattlein a car could be a
baby's rattle under the seat.

Handle uncertain data and uncertain conclusions. Probably the easiest approach is independence-assumption combination.
Decide initial values for probabilities, and how to treat evidence against something.

If thisisagroup project, one person should handle the control structure of the program and provide utilities for everyone else.
Other people can speciaize in different systems of the car. For instance, someone should probably handle the body and interior
of the car, someone the electrical system, someone the engine and fuel system, etc. About thirty rules should be written by
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each contributor. Emphasize quality of the rules, not quantity.

Go to book index
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Search

It's time for a change of pace. In this and the next two chapters, we'll cover anew class of artificial intelligence techniques.
These are good for reasoning about events in time and plans of action. Technically, "search” | REFERENCE 1|. .FS|
REFERENCE 1| Also called heuristic search, but that's misleading because you don't need heuristics to do it, and anyway the
term "heuristic” is overused and much abused in artificia intelligence. .FE We'll need a new vocabulary to talk about search
problems--terms like "state", "operator”, "search strategy", "evaluation function”, and "branching factor".

Search problems appear in many application areas. Search relates to rule-based systems because they involve actions
occurring over time. In fact, search is an abstraction of the concept of a control structure. So we'll be looking at rule-based
systemsin anew way.

Changing worlds

So far the facts in Prolog databases have rarely changed. We added facts through caching in forward chaining, but those facts
were logically derivable from the other facts and rules all along. We rarely removed facts from a Prolog database--only in
implementing a few special programs.

But Prolog databases usually model a situation in the world, and the world can change. In fact, the result of running an
artificial intelligence program may be to recommend actions in the world, which are then taken, and then reflected in changes
to the facts true about the world. Often an artificial intelligence program is useless unless it does change something in the
world. For instance, an automobile diagnosis program is not much help unless you can actually fix acar by its
recommendations.

In many important applications, a problem can be solved only by a series of actions, not just one. Then the problem must
track the changing situation in the world. Changing the facts appropriately can be complicated for such problems, and we
need some new tricks.

States

A situation in the world described by some factsis a state. State is a fundamental concept in many areas of science and
engineering. For instance, in physics astate is a set of measurable physical parameters fully describing some part of the
universe; in simulation models of economics, a state is the set of values assigned to model parameters; and in computer
systems programming, a processing state is a set of values currently in registers, buffers, and stacks. So a state is a " snapshot”
of aprocessin time.

A state can be instantaneous or it can last for quite awhile. In artificial intelligence (and computer science too) we only
concern ourselves with non-instantaneous states, but where state changes (branches or transitions) are instantaneous. That is,
state changes are discrete and not continuous. Loading a computer register is an example of a discrete state change. Searchis
the study of states and their transitions.

A state must include everything important about a situation in one bundle | REFERENCE 2|. .FS | REFERENCE 2| At |east
the statesin this book. To make things easier, we deliberately ignore a class of searches performed using and-or-not lattices,
for which states represent pieces of a problem. See other books under the topic of "searching and-or trees'. .FE That means
everything necessary to reason about it--and in artificial intelligence, that usually meansalist of facts. These may be alot of
facts, and often we'll want to reason about many states, as when we try to figure how to achieve some desirable state. So two
tricks often simplify state descriptions. First, we can keep only the facts relevant to the very specific problem we're working
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on. For instance, if our problem isto fix a car when we know there is something wrong with the electrical system, we can
ignore facts about the state of the engine (whether it is cold or warm, whether the timing is accurate, whether the oil has been
changed recently, etc.) since they don't matter. Second, we can compress the fact representation by collapsing several
predicates into one, like the "relational database” predicates of Section 2.9. For instance, if ten screws hold the battery onto
the chassis of a car, we can write one fact with ten arguments where argument number K isthe word "on" or the word "of "
reflecting the status of screw number K.

Three examples

Let's consider some examples of search problems. First, consider the problem of getting by car from one intersection to
another in acity. There are different streets that you can take and different turns you can make. To complicate matters, some
streets are one-way, and some turns areillegal. Also, you will probably want a short route rather than just any route.
Considering this a search problem, a state sithe position of a car in acity. We can represent this as the name of the
intersection, since intersections are the only places where decisions must be made, and therefore the only locations that
matter to reasoning. Solving a search problem means finding a series of states ending in some desired state, so the solution
will be a sequence of intersections acar will traversein order.

As a second example of search, consider the problem of car repair. Even if you know what's wrong, repair israrely as simple
as yanking the old part out and sticking the new part in. Usually you must unloosen fasteners (like screws and nuts) first, and
move other parts out of the way to get to the part you want. Y ou may need to run some tests on the suspect part to seeif itis
indeed faulty. Then you must reassemble the whole mess, doing the reverse of the previous steps in the reverse order--and
sometimes exact reversal isimpossible, as when removing a cover is easy but refastening requires careful hole alignment.

Y ou must also worry about the difficulty of various actions, if you want to get the job done efficiently; a sequence of actions
that take half as much effort as another is better. For this problem, states are situations of partial disassembly (or assembly) of
the car.

Asathird example, consider the problem of smarter forward chaining for arule-based expert system. Section 6.2 presented a
simple general-purpose approach to forward chaining, using simple ideas like putting facts in a priority list in the order we
find them (the focus-of -attention strategy). These ideas work for awide class of applications. But for a specific application, a
specific conflict-resolution policy may be better. For instance, we can keep the facts sorted by priorities of human experts
(the experts prestored hunches of relative importance), by our own analysis of the rules (like how many new conclusions a
fact can lead to), by statistics on past runs of the rule-based system, or by dynamic features of the reasoning (like whether a
certain fact has been proved yet). In general, intelligent forward chaining by intelligent fact sorting is a search problem with
many options, each representing a fact to pursue, each leading to a different set of facts to choose from next, and so on. So a
state for this problem is a set of unpursued (and perhaps a so pursued) facts.

We'll use these examples subsequently in the chapter. They were picked to symbolize three important applications of search:
optimization problems, human and robot task planning, and expert systems.

Operators

Our three examplesinvolve many states. They can involve even more branches, ways directly from one state to another. It
helps to group branches into categories called operators. Operators often correspond to verbs of English, the names of real-
world actions.

Consider the three examples:

1. For finding routes in acity, the operators are possible actions at an intersection, since states correspond to
intersections. So the operators are "go straight ahead”, "turn right", "turn left", "turn into the first street to your
right”, "turn into the second street to your right", etc.
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2. For car repair, the operators are much more numerous, including every possible action that can be done on
the car: unfasten, unscrew, remove objects, manipulate objects, replace, align, fasten, screw, and so on.

3. For smarter forward chaining for a rule-based system, there seems to be only one operator: remove afact
from the set of unexamined facts and pursue its implications.

Be careful though, because operators are not well-defined for many problems. We could, for instance, consider each screwing-
in for every single screw as a separate operator; or we could consider each pursuit of afact as a separate operator. But if
operators get too specific, they lose their chief advantage of abstraction over many state transitions.

Preconditions and postconditions are frequently associated with operators. Preconditions for an operator are things that must
be true before the operator can be applied, writable as predicate expressions. For instance, a precondition to the operator of
removing the battery from a car isthat all the screws fastening the battery to the chassis are removed. Analogously,
postconditions are conditions that must be true after an operator has been applied. For instance, a postcondition of removing
the battery from acar is that the car can't start when the ignition switch is turned. Preconditions are useful because they
suggest what is necessary to apply an operator; postconditions are useful because they summarize the effect of an operator.

Search as graph traversal

The main reason for identifying states and operatorsisto let us plan in advance a solution to a search problem. By reasoning
hypothetically about operator sequences, we can avoid blundering about in the real world. Planning can also ensure that we
find the best solution to a problem, not just any solution.

For such advance planning, we can consider a search problem as atask of traversing a directed-graph data structure.
Semantic networks (see Section 2.7) are one kind of directed graph important in artificial intelligence, but there are severa
others too. Graphs consist of nodes (small named circles) and directed edges (named arrows) connecting nodes; we can
equate nodes with states, the names on directed edges with operator names, and edges themsel ves with branches or operator
applications. In a search problem, we are given a starting state and one or more finishing or goal states. On the search graph
this means finding a path or traversal between a start node and one of a set of goal nodes. (Here we broaden the term "goal"
beyond its meaning for rule-based systems, in which a"goal" is a predicate expression we want to prove; in search, a"goa”
isany desired final state.)

Figure 9-1 shows an example route-planning problem. As we said, city-route planning is a search problem for which the
states are intersections (intersections are the only places where we must make choices). Then a search graph can be drawn as
in Figure 9-2. Thereisjust one goa state.

Figures 9-3 and 9-4 show similar example search graphs for the auto repair and the smarter forward chaining problems. The
latter isinteresting because we don't know the goal state in advance: we just keep searching until there are no more facts to
pursue, and that's agoal state. If we knew what a goal state was in advance, we wouldn't need to do any work. An important
class of search problems similarly defines goal states indirectly, in that they only can recognize one when they see one.

The simplest search strategies: depth-first and breadth-first

There are many control structures for search; these search strategies are summarized in Figure 9-5. The two simplest are
depth-first search and breadth-first search.

With depth-first search, the start state is chosen (visited) to begin, then some successor (a state that we can reach by asingle
branch or state transition) of the start state, then some successor of that state, then some successor of that, and so on until we
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reach agoal state. Usually the choice among successors of a state isn't arbitrary, but made by "heuristics', which we'll explain
in Section 9.7. If depth-first search reaches a state S without successors, or if al the successors of a state S have been chosen
(visited) and a goal state has not yet been found, then it "backs up”. That meansit goes to the immediately previous state or
predecessor--formally, the state P whose successor was S originally. Depth-first search then takes the next-suggested
successor choice of P. So "backing up” isjust like Prolog backtracking.

An example will make this clearer (see Figure 9-6). The circled |etters are states, and as before, the arrows are branches
(operator applications). Suppose Sisthe start state and G isthe only goal state. Suppose that vertical height of the state on the
page is used to rank states when a choice is necessary, with higher states having higher rank. Depth-first search will first visit
S, then A, then D. But D has no successors, so we must back up to A and try its second successor, E. But this doesn't have
any successors either, so we back up to A again. But now we've tried all the successors of A and haven't found the goal state
G, sowe must back up to S.

Now S has a second successor, B. But B has no successors, so we back up to S again and choose its third successor, C. C has
one successor, F. Thefirst successor of FisH, and thefirst of H is J. Jdoesn't have any successors, so we back up to H and
try its second successor. And that's G, the only goal state. So we're done. The solution path to thegoal is S, C, F, H, and G.

One problem with depth-first search is that it works fine when search graphs are trees or lattices, but can get stuck in an
infinite loop on other graphs (see Appendix C for definitions of these terms). This is because depth-first search can travel
around acyclein the graph forever. Onefix isto keep alist of states previoudly visited, and never permit search to return to
any of them. We will do thisin our depth-first program in the next chapter, but this check can require alot of time since there
may be lots of previous states, and states with long, complicated descriptions.

Breadth-first search does not have this danger of infinite loops. The ideaisto consider states in order of increasing number of
branches (level) from the start state. So we first check all the immediate successors of the start state, then all the immediate
successors of these, then all the immediate successors of those, and so on until we find agoal state. For each level, we order
states in some way as with depth-first search. For Figure 9-6, Sison level 0; A, B, and Careonlevel 1; D, E, and F, level 2;
Hand |, level 3; and J, G, and K, level 4. So breadth-first search, assuming the previously-used vertical ordering among same-
level states, will consider inorder S, A, B, C, D, E, F, H, |, J, and G--and then stop because it's reached the goal state. But the
solution path it found was the same as depth-first's.

Breadth-first search is guaranteed to find agoal state if a path to one exists, unlike depth-first, but it may take awhile. Loops
in the search graph will cause inefficiency (useless extra paths being considered) instead of infinite processing loops. If that
inefficiency is bothersome, we can use the same trick in depth-first of storing alist of previously visited states and checking
against it. Notice that by working by level, any later path we find to a state can be no shorter than the first path found to it, so
the first path found to a state can be considered the best.

Depth-first and breadth-first search often occur in disguise in artificial intelligence and computer science. The backward
chaining, forward chaining, and rule-cycle hybrid chaining algorithms of Chapter 6 were really kinds of depth-first search, so
they can be called depth-first control structures. Depth-first control structures are common in computer applications because
of their intimate connection to stacks, an easy-to-implement data structure. Though we didn't discussit in Chapter 6, we
could do breadth-first backward chaining as a variant control structure, or breadth-first forward chaining. So be careful not to
confuse the backward/forward chaining distinction with the depth-first/breadth-first search distinction--they're quite different
things.

Heuristics

Depth-first and breadth-first search are easy to implement but often inefficient for hard problems. A top concern of artificial
intelligence research has been finding better search strategies. Many of these better strategies are related to depth-first and
breadth-first search. Two common variants are search using heuristics and search using evaluation functions.
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Heuristics are any nonnumeric advice about what order to try the successors of a state for further search | REFERENCE 3|.
.FS | REFERENCE 3| Some authors say heuristics can be based on numeric calculations, but we'll call such things evaluation
functions to prevent confusion. .FE So their effects are "local": they give advice for specific successor choices, not about the
whole search strategy. Since both depth-first and breadth-first must make such choices, both can use heuristics, as well as the
other search strategies we'll discussin this chapter. Heuristics are like gardeners because they prune (eliminate) branches.
Heuristics are a generalization of meta-rules (see Section 6.7), rules about rules.

Usually heuristics are not guaranteed--that is, they represent reasonabl e advice about how to proceed, and may be wrong. But
if they'rewrong alot, there's no point in using them. Heuristics need not give a unique recommendation of what's best in
every situation. At worst, we can choose at random among multiple recommendations. What if that's not a good idea?
"Search" me.

Here are example heuristics:

--For city route planning, never turn right twice in arow, since this tends to make you go back in the direction
you came from.

--For city route planning, turn whenever you find you've left city limits.
--For car repair, never remove a part unlessit is near another part you think isfaulty.
--For car repair, take out small partsfirst.

--For smarter forward chaining, pursue facts that occur together with other known facts on the right side of a
rule.

--For smarter forward chaining, pursue facts that led to useful conclusions on the ten most recent runs.
Heuristics are not all equally valuable. Compare:

1. For car repair, do little jobsfirst.

2. For car repair, first take out small parts attached to objects you want to fix.

3. For car repair, first take out screws attached to objects you want to fix.

4. For car repair, if you must fix the aternator, take out its mounting screws first.

5. For car repair, if you must fix the alternator, take out its Right Front Mounting Screw first.

These heuristics span a spectrum from general to specific. Really general advice like#1 is hard to apply (it's hard to decide
what's a"little job" and what isn't) and wrong in many cases (it would recommend equally the removal of any screw in the
car, most of which are irrelevant). Such heuristics are "proverbs’, like "Haste makes waste"; they sound nice, but they're
nearly useless. At the other extreme, heuristic #4 and #5 is too specific to be helpful: it just appliesto one action involving
one screw in acar, and its effect could be had by just putting conditions on the "fix-alternator”" operator. And if wetried to
use heuristics like #5 in a search problem, we'd need alot of them--probably many more than the number of operators--so
search efficiency would probably decrease, not increase as is the purpose of heuristics. Our best bets are heuristics like #2
and #3 that compromise between extremes; probably #3 is better because "small part" is hard to define.
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Evaluation functions

A big difficulty with heuristics is disagreements between them, situations for which two heuristics make contradictory
recommendations. If one heuristic is known to be better than the other, then it should have priority, but the two can seem
equally good. If such difficulties arise frequently, it's better to rate states numerically. A method for calculating such numbers
is called an evaluation function. By convention the values of evaluation functions are nonnegative numbers such that the
smaller the number, the better the associated state; and goal states have an evaluation function value of zero. Evaluation
functions can be in any form and can use any available information about a state; they can also use a description of the goal
states. (However, it's desirable that evaluation functions be "smooth”; that is, if they're calculated using numbers, they
shouldn't ever jump abruptly in value when the numbers vary slightly.)

Some example evaluation functions:

--For city route planning, take the straight-line ("as the crow flies") distance between an intersection and the
goal intersection (that is, prefer the successor state closest to the goal state along a straight line).

--For city route planning, take the straight-line distance to the goal plus one tenth of the number of streets
crossed by that straight line (this helps you avoid stop signs and traffic lights).

--For car repair, take the number of parts removed from the car plus the number of faulty partsin the car (this
will increase in the first half of the solution, but will decreasein the last half, and should be kept small

anyway).

--For smarter forward chaining, take the number of right-side expressionsin rules minus the number of facts
(proved and given) in some state. (Thisisn't likely to approach zero, but it does guide search helpfully.)

Evaluation functions make possible two new search strategies, summarized on the third and fourth rowsin Figure 9-5. The
evaluation-function variant of depth-first search is called hill-climbing (or sometimes discrete optimization) search; the
evaluation-function variant of breadth-first search is called best-first search. However, best-first usually has an additional
twist beyond breadth-first: the best-evaluation (lowest-evaluation) state of those anywhere in the search graph, of those
whose successors have not yet been found, is picked, not just a state at the same level asthe last state. So best-first search
usually "jumps around” alot in the search graph, always picking the minimum-evaluation state of al the unvisited states it
knows aboui.

To illustrate best-first search, take the search graph of Figure 9-6 and assume the evaluation function values shown as circled
numbersin Figure 9-7: S:12, A:7, B:8, C:8, D:6, E:4, F:7, H:4, I:5, X2, G:0, and K:1. (Ignore the numbers in squares and the
numbers beside the arrows for now.) As before, assume Sisthe starting state and G isthe only goal state. Best-first search
would start with S, and would find and evaluate its successors A, B, and C, to discover that A is the minimum-evaluation
one. So A is picked next, and its successors D and E evaluated. The states not yet examined to find successors (visited) are D,
E, B, and C, with evaluation function values 6, 4, 8, and 8 respectively. E isthe best, but it has no successors; D is the second
best, but it has no successors.

We've got atie between the two remaining unexamined states, B and C. In such cases, heuristics can decide (and perhaps for
near-ties too). Assuming the vertical ordering heuristic used with the depth-first and breadth-first examplesin Section 9.6, B
should be picked next. But it has no successors, so C must be picked. It has one successor, F. F has two successors, H and I,
with evaluation function values 4 and 5. The 4 is better, so H is better, and is picked next. H has successors J, G, and K with
evaluation function values 2, 0, and 1. But G isagoal state, so we can stop. In summary, best-first search examined the states
intheorder S, A, E, D, B, C, F, H, G. That's different from both depth-first and breadth-first.

Cost functions
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Evaluation function values are not the only numbers helpful in search. For some problems, we don't want just any path to a
goal state, but agood or best path. We could assign costs to each operator, total up these costs along solution paths, and rate
the paths. This requires a nonnegative cost function measuring something like the difficulty by the sums of going from one
state to another.

Some example cost functions:
--For city route planning, the total length in meters of a path;
--For city route planning, the number of intersections in a path (since intersections slow you down);
--For car repair, the time in minutes needed to do a sequence of actions;
--For car repair, the amount of energy in calories needed to do a sequence of actions,
--For smarter forward chaining, the computer time in seconds required to pursue factsin a particular order;

--For smarter forward chaining, the amount of main-memory storage in bytes required to pursue factsin a
particular order.

Cost functions and evaluation functions are easy to confuse. Remember that evaluation functions refer to the future, cost
functionsto the past. That is, evaluation functions guess how close a state isto a goal state, while cost functions measure how
far astateisfrom the start state. So cost functions are more concrete than evaluation functions. A cost function often suggests
an associated evaluation function, not the other way around, because (as we will see) it is useful to have them in the same
units. So if a cost function measures in meters, its evaluation function should too.

Optimal-path search

A search that must find the lowest-cost (optimal) path to agoal state, instead of just any path, needs a different search
strategy from those so far considered. If we have a cost function but no good eval uation function and no good heuristics, we
can use branch-and-bound search (see Figure 9-5). It's like best-first search but using costs instead: it always finds successors
of the state whose path has lowest total cost from the start state. Such a strategy may "jump around" among states as best-first
search does, but it has a nice property: the first path to the goal that it finds is guaranteed to be the lowest-cost path to the
goal.

If we have both cost and evaluation functions, we can use an A* search strategy (that's pronounced "A-star"). The ideaisto
sum the cost and evaluation function value for a state to get a measure of overall worth, and use these numbers to select states
in a best-first search agorithm instead of just the evaluation function values. (This sum makes most sense when the cost
function and evaluation function are in the same units.) So A* search is sort of ahybrid of best-first (using an evaluation
function) and branch-and-bound search (using a cost function), incorporating information from both, and often giving better
performance than both. As with branch-and-bound search, a certain guarantee applies to a solution found by A* search: if the
evaluation function value for any state Sis aways no more than the subsequently found cost from S to the goal, then the first
path to the goal found by A* search isthe lowest-cost path to agoal. But A* is often still a good search strategy even when
the guarantee doesn't hold.

Suppose we use the A* strategy instead of best-first on the search graph of Figure 9-7. Recall that the numbersin circles are
the evaluation function values of states. Suppose the costs for path segments are shown by the numbers next to the arrows: 4
forAtoS,1forAtoD,2forAto3, 1forStoB,2for StoC, 1forCtoF, 3for FtoH, 1for Ftol,1forHtoJ, 2for Hto
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G, and 2 for H to K. The criterion number for a state is now the sum of the evaluation function value and the costs along the
path leading to that state. For instance, the criterion number for state H is |4 + 3+ 1 + 2 = 10|. The other criterion values are:
S:12, A:11, D:11, E:10, B:9, C:10, F:10, I:9, J9, G:8, and K:9; these numbers appear inside squaresin Figure 9-7. A* search
will work like best-first but use the numbersin the squares instead of the numbersin the circles, and it will visit the statesin
theorder S, B, C, F, I, H, and G. (The evaluation function values are not alower bound on the cost to the goal, but that
doesn't matter when there's only one path to the goal.)

A route-finding example

To better illustrate the differences between search programs, we show results from a program for one of our three standard
examples, finding city routes. Figure 9-8 shows a portion Monterey, California, USA for which we stored street-intersection
coordinates. The problem was to go from the the point marked "start" to point marked "goa". The evaluation function was
the straight-line distance to the goal (computed from approximate coordinates of each intersection), and the cost function was
the distance along the route (computed by summing straight-line distances between successive intersections). Shown on the
map are the results of three search strategies: breadth-first, best-first, and A* search. Asyou can see, the paths are different:
A* finds the shortest path, breadth-first minimizes the number of intersections, and best-first tries to keep moving towards the
goal. (Though not shown on the map, depth-first search wanders around stupidly.)

Special cases of search

Certain tricks sometimes make search problems easier. One trick often possible is reversing the search, working backward
from goal statesto start states. For instance:

--for city route planning, find a path from the destination to the start;

--for car repair, solve the first half of the job by reasoning from the part P that must be fixed, deciding what
other part P2 needsto be removed to get to P, what other part P3 must be removed to get to P2, and so on.

This does require you to know beforehand all goal states, something not possible for the smarter forward chaining problem
and other important problems, in which finding agoal state isthe whole point of the search (though backward chaining does
represent something like areverse of forward chaining). If you know more than one goal state, you can either try reverse
search with each in turn, or make all the goal states the starting set of "unexamined" states for those strategies that use them.

Backward search generally requires different reverse operators from the forward search operators. For instance in city route
planning, the reverse of aright-turn operator is a"backward |eft-turn" operator. So the solution to the backward search can be
different from the solution to the forward search even if the same heuristics, evaluation function, and/or cost function are
used. Fortunately in many search problems, the backward operators are identical to the forward operators, asin route
planning on alarger scale, planning of routes between cities.

Whenever backward search is good, an even better ideais parallel forward and backward search on the same problem--
bidirectional search. Run both searches independently (either on two processors or time-sharing on a single processor), and
stop whenever they meet (or reach the same state). Asillustration, compare the top and middle diagramsin Figure 9-9.
Bidirectional search often finds a solution much faster than either forward or backward search alone, because the number of
search states usually increases quickly as we move farther from the starting point, and with two searches we're searching half
as deep. But it does have a serious danger: if we use a poor search strategy for both searches, like best-first with a poor
evaluation function or, often, or depth-first search, the two searches may "bypass' one another instead of meeting in the
middle.

Another trick we can often use to make search easier is decomposition, breaking the search problem into several ssmpler sub-
searches, each of which can be solved independently. This usualy means finding an intermediate state through which the
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search must go | REFERENCE 4. .FS | REFERENCE 4| A starting state usually has several branches from it. But each
branch isn't considered a "decomposition” of the problem--the whole search problem isn't made any simpler by looking at it
thisway, asit usually is by decomposition around intermediate states. .FE Then we solve two separate search problems:
getting from the start to the intermediate state, and getting from the intermediate state to agoal state. Asillustration, compare
the top and bottom diagrams in Figure 9-9. Y ou can also decompose a problem into more than two pieces, if you can figure
out more than one intermediate state that the search must go through.

For city route planning, if the goal is a place on the other side of ariver, and only one bridge crosses the river, you must use
that bridge. So you can simplify the problem by decomposition into two subproblems: getting from your start to the bridge,
and getting from the bridge to the goal. For car repair, a good decomposition isinto three pieces: getting the faulty part out,
fixing the faulty part, and then reassembling the car. Decomposability of search depends on the problem, but whenever it's
possible it's usually a good idea because shallow search problems can be alot easier than deep search problems.

Another useful feature of a search problem is monotonicity. If whenever an operator can be applied from a state S, that same
operator can be applied from any state reachable from S (by a sequence of successors), then the search problem is monotonic.
Often we don't need to be so careful in choosing an operator in a monotonic search problem, because we can can get much
the same effect by applying the overlooked operator later, and hence we don't need terribly good evaluation functions and
heuristics. But monotonic search problems aren't common. Only the third of our three standard examples is monotonic, the
smarter forward chaining problem (since a postponed pursuit of some fact F is always doable later). Many searches for
proving things are monotonic, since provable things usually don't stop being provable later (what is called monotonic logic).
One word of warning: monotonicity depends on the operator definitions, and different operators can be defined for the same
search problem, so a search problem monotonic for one set of operators may not be for another.

How hard is a search problem?

It helps to know the difficulty of a search problem before tackling it so you can alocate time and space resources. Sometimes
what seems an easy problem can be enormously difficult, or a problem very similar to areadly difficult one can be easy. So
people try to estimate the number of states that need to be studied to solve a search problem. Two methods can do this:
bounding the size of the search space, and calculating the average branching factor or fanout of successive states.

The first method takes an upper bound on the number of states that need to be examined to solve a problem as the number of
possible statesin the entire problem. This set of all possible statesis called the search space, and what's needed is the size of
the search space. (Don't confuse the term "search space” with the amount of memory needed to search: "space” is used
abstractly here, the way mathematicians use "vector space”.) For some problems, the size of the search spaceis easy to see
from the description of the problem, as for city route planning in which it's the number of intersections in the city, something
we can count. For other problems, we can use what mathematicians call combinatorial methods. For instance, for car repair
we can describe the condition of every part in the car as either in the car and faulty, in the car and OK, out of the car and
faulty, or out of the car and OK. So if there are 1000 partsin the car, the size of the search space is 4 to the 1000th power--a
lot! That means heuristics or an evaluation function are necessary to solve this problem, because we'll never succeed if we try
operators at random.

The size-of-the-search-space method of estimating search difficulty can't dways estimate the size of the search space so
easily, asin smarter forward chaining when we can't tell in advance which or even how many facts we'll prove. Also, the
method cal culates only an upper bound on difficulty. Alternatively, we can reason how the number of states increases with
each level of search, and figure how many levels deep we'll go. The number of successors (usually, previously unvisited
successors) of astate is called its branching factor. (Caution: don't confuse the branching factor with the number of operators
that can generate successors, a smaller number.) If the branching factor doesn't differ much between states, we can speak of
an average branching factor for the whole search problem. Then we can estimate the number of states at level K in the search
graph as |B sup K|, B the average branching factor. Notice that this exponential function gets large very fast as K increases--
the so-called combinatorial explosion. So if we can estimate the level of agoal (the number of states from the starting state to
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it), we can estimate the number of states that will be visited by breadth-first search, summing up the estimate for the number
of states at each level. Thisis also agood approximation for best-first search, branch-and-bound search, and A* search, when
evaluation and cost functions aren't very helpful in guiding search.

As an example, the average branching factor for the city route problem is around three, since there are usually three branches
(directions of travel) at an intersection: go straight, turn right, and turn left. Suppose we know we are about 10 blocks from
where we want to go. Then for a breadth-first search there are approximately three states at level 1, nine states at level 2, 27
at level 3, and so on up to |3 sup 10| for level 10. So the total number of states of level 10 or less is approximately the sum of
ageometric series.

1 +3+9+ 27 + ... = (3sup11-1)/ (3-1)=(3supllr1-1)/1/ 2 =
88573

In general, in a search problem with an average branching factor of B, the number of states up to and including those at level
Kis|(Bsup{K+1} -1)/(B-1)| If Bislarge (say 5 or more), this can be approximated by |B sup K|, the number of states
at the deepest level. These formulas help quantify the advantages of bidirectional search and search decomposition. If you
divide a problem whose solution is |R| states long into two approximately even halves, each half is about |R / 2| states long. If
the branching factor B islarge, and the same in both directions, the number of states examined in the two half-problemsis
much less than the number of states examined without decomposition or bidirectional search because:

Bsup{ R/ 2} +Bsup {R/ 2} "i's much | ess than" B sup R
because, dividing both sidesby [B sup {R/ 2} |:
2 "is much | ess than" B sup {R/ 2}

The effect of heuristics and evaluation functionsisto rule out certain successors for particular states in preference to other
successors. So in effect, heuristics and evaluation functions decrease the average branching factor. This means we can get
farther down into the search graph faster. So the usefulness of heuristics and evaluation functions can be quantified as aratio
of average branching factors with and without them.

Backward chaining versus forward chaining (*)

Analysis of search-problem difficulty lets us quantify for the first time differences between the control structures discussed in
Chapter 6. Take for instance this rule-based system:

t :- a, b.

t - c.

u:- not(a), c.
u:- a, d.

vV :- b, e.

And further assume the facts a, e, and d only aretrue, and given in that order.

Backward chaining will try the first three rules, which fail, and then the fourth, which succeeds. Basic backward chaining
without caching involves eight total queries: top-level predicatest and u, a (which succeeds), b (which fails), ¢ (which fails),
a again (which succeeds), a again, and finally d (which succeeds). The timeto do this is approximately proportional to the
number of queries made because each query requires an index lookup of nearly-equal time.
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Pure forward chaining will match fact a to expressionsin the first and fourth rules, then match e to an expression in the last.
Finally, it matches d in the fourth rule, and u is proved. So four matches are made. The timeto do thisis approximately
proportional to the number of matches because each requires an index lookup of nearly-equal time. Now we just compare
eight queriesto four matches to decide whether backward or forward chaining is better for this very specific situation.
Though thisis a comparison of different units ("apples with oranges') we can usually conduct experiments to equate both
gueries and matches to time units.

The main problem with this analysisis that it's hard to generalize: we may not know which or how many facts are going to be
true in asituation, and there are many possible situations. Simulations are one approach. But we can also use probabilitiesin
mathematical analysis, as we'll now show.

Let's consider backward chaining first, still using the previous example. Suppose that potential factsa, b, ¢, d, and e have
independent probabilities P of truth. Then the probability of thefirst rulet :- a, b. succeeding is |P sup 2|, the probability of
the second succeeding is |P|, thethird |( 1 - P) PJ, and the fourth and fifth |P sup 2|. The expected number of queries generated
when the rules are in thisorder isalong, tricky formula because we don't need to fully evaluate arule to have it fail:

3Psup2+3(1-P)P+4P(1-P)P+8P(1-P)sup2P

+10 (1 -P) P(1-P)
+9(1-P)sup3+10( 1-

P+10P( 1- P) sup 3

P)Y P(1-P) sup?2

We got this formula by reasoning about the search lattice, which was actually more like a decision lattice, for the situations
possible (see Figure 9-10). Here are the rules again:

t :- a, b.

t - cC.

u:- not(a), c.
u:- a, d.

vV :- b, e.

The first term in the formula corresponds to success of the first rule, terms 2 and 3 to the success of the second, no terms to
the third (there's no way the third rule can succeed given the second fails), term 4 to the success of the fourth rule, term 5 to
the success of the fifth, and the remaining termsto the three different cases in which al the rulesfail. To get this formula, we
separately considered cases with a true and with a false.

We can reason similarly about forward chaining when facts are aways taken in an order and each has the same probability P
of occurrence (see Figure 9-11). Suppose the order is a before b, b before ¢, ¢ before d, and d before e. The formulafor the
number of fact-rule matchesis:

1P(1-P) +3Psup2+3Psup2(1-P)+3Psup2(1-P) sup?2
+4Psup2(1-P)sup3+ 3P(1-P) supd4

+4Psup3(1-P) sup?2

+ Psup2 (1-P) sup3+3Psup2(1-P) sup3
+3P(1-P)supd+3Psup2(1-P)sup3+2P(1-P) supd4
+2P(1-P)supd+1(1-P) supb

Knowing the ratio of the cost of a backward-chaining query the cost of a forward-chaining match, we can compare the two
formulas for a specific value of P to decide whether backward or forward chaining is better.
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Using probabilities in search (*)

Since probabilities are numbers, they can guide hill-climbing, best-first, branch-and-bound, and A* searches. For instance,
the probability that a state is on a path to agoal can be used as an evaluation function. Or in search during forward chaining,
facts can be ranked for selection by one million minus the reciprocal of their apriori probability, so unusual facts are
followed up first. In backward chaining using rules with uncertainty like those in Chapter 8, rules can be selected by the
reciprocal of their rule strength (the rule strengths being the probability of their conclusion under the most favorable
conditions.)

Another example: visual edge-finding as search (*)

Computer vision is an important subarea of artificial intelligence. It's complicated, and its methods are often quite
specialized, since two-dimensional and three-dimensional information seems at first to be quite different from predicate. But
it aso exploits many of the general-purpose techniques described in this book, including search.

Onerole search playsisin edge finding and edge following, as akind of "constructive" search that actually builds something
asit performs a search. Most computer vision systems start from a digitized image, atwo-dimensional array representing the
brightness of dotsin atelevision picture. The pictureisfirst "cleaned up" and "smoothed out” to make it easier to analyze,
using some mathematical tricks. Any remaining sharp contrasts between adjacent parts in the picture are important--contrasts
in brightness, color, and the "grain” or texture of small adjacent regions. These contrasts can be used to make a line drawing
(adrawing consisting only of lines) of the picture, where lines correspond to boundaries of high contrast between regions of
mostly-homogeneous characteristics; the lines are called edges. So aline drawing can be akind of data compression of the
origina picture. Line drawings provide abasis for most visual analysis techniques, techniques that try to figure out what the
picture is showing.

But edge-finding isn't as easy asit may seem. The problem is that for various reasons, thingsin the real world that you'd think
would make edges don't. Consider Figure 9-12. Different surfaces may coincidentally be the same brightness and color along
part of their edge, or an edge may lie in shadow, or glares and reflections may cover the edge, or the resolution of the picture
may be insufficient to pick up small details of edges. So usually only some edges and parts of edgesin a picture can be
recognized, meaning line drawings with gaps. Human beings can easily fill in these gaps, because they have strong
expectations about what they will see and their vision automatically fillsin details. But computers must be taught how.

A good first step is to quantify the "edgeness’ of each dot in the picture. Several mathematical formulas can be used, but well
show here a simple one that only examines the brightness of its cell and itsimmediate neighbors. (Edges between regions of
different color can be found by looking at brightness of the picture viewed through colored filters.) Suppose we represent the
picture as atwo-dimensional array |b (i, j )| of numbers representing light intensities. Then the magnitude of the gradient for
each dot is defined as:

g(i,j)y = sagt {(b(i+l, j)-b(i-1,7]j ) ) sup2+
(b(Ci,j+1)-b (i, j-1) ) sup2}

Thisisameasure of "edgeness' for every dot. The larger this number is, the more the brightnesses around some dot in the
picture differ among themselves.

Now we're ready to formulate edge finding as a search problem. A state can be represented as a two-dimensional bit array |e (
i,])|(thatis, an array of things with Boolean or true/false values) with an entry for every dot in the picture. A "true" means
that in the corresponding picture, the dot lies on an edge; in the starting state, every dot is marked "false”. A branch between
states changes a single element from "false" to "true", meaning we've decided an edge is there. There's only one operator:
mark |e(1,] )| as"true" for somei and somej. Figure 9-13 gives an example interpretation problem. The upper part shows
an array of edgeness measures|g (i, j )|, and the lower part shows areasonable assignment of edges|e (i, ] )| tothe
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corresponding cells.

However, thereis no well-defined goal for this problem. It's more like an optimization problem in operations research. We
want to maximize the number of "good" edges identified, so it sounds a bit like a best-first search with an evaluation
function. Several things can be considered in an evaluation function:

--the number of cells with edgeness more than some number C, of those for which |e (i, j )| isfase (this
measures the compl eteness of the edge assignments);

--the total number of approximately straight line segments formed by the dots marked "true" (this measures the
"elegance” of the edge assignments);

--the sum of the average curvatures for al such approximately-straight line segments (this measures
straightness of segments);

--the number of true-marked cells with exactly two true-marked immediate neighbors (this measures
narrowness of edges);

--the negative of the average edgeness measure of all true-marked cells (this measures the selectivity of true-
marking).

Whenever several different measures like these describe progressin a search problem, agood ideais to take aweighted
average of these, and make that the evaluation function. (Or if all the numbers are positive, take the product.) That seems
good here, but we would need to experiment to find the proper weightings.

Despite the lack of agoal per se, it helpsto invent one to prevent working forever. A simple but effective criterion is to stop
at state S if no successor state under consideration is better than D worse than the evaluation of S, for some fixed constant D.

Notice how this search problem differs from city-route planning: the edge finder will rarely mark adjacent cellsin succession.
Infact, it'slikely to jump around considerably, since a good heuristic isto mark the cell with the highest "edgeness’ among
those not yet marked "true”. With that heuristic, we're unlikely to mark adjacent cellsin succession. This nonlocality of
processing appears in many different vision applications, and reflects the concurrency apparently present in much human
vision.
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Exercises

9-1. (E) Explain why none of the following are states as we define the term for search.

(a) All the important events that happen in an organization in one day.

(b) The current temperature of aroom.

(c) The mental condition of a person's mind.

9-2. (A,E) Explain how using inheritance to find a value of the property of some object isakind of search.

9-3. The search graphs in this chapter have all been planar--that is, none of the branches crossed. Is this necessarily true of all
search graphs?

9-4. (a) Modify the description of the algorithm for pure forward chaining, given in Section 6.2, to work in a breadth-first
way.

(b) Explain how a breadth-first backward chaining might work.

9-5. Consider the problem of driving by car from one place in a city to another. Assume you do not know the way. Consider
this as a search problem with three operators:

A: travel to the next intersection and keep going straight, if legal
B: travel to the next intersection and turn right, if legal
C: travel to the next intersection and turn left, if legal

(a) Suppose you are driving a car without a map. Which control strategy is better, depth-first or breadth-first? Assume you
can use simple heuristics (like "turn around if you're in the country™) to stay near the goal.

(b) Suppose you planned a route with a map, and the map was dlightly wrong (for instance, a street is closed for repairs).
How could you prepare to better handle such occurrences?

9-6. Consider the complete search graph for some problem shown in Figure 9-14. Suppose state "a" is the starting state, and
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the states shown are the only possible states (and none of the states shown is the goal). Numbers written next to states
represent the evaluation function at those states, and numbers written next to branches represent the cost function on those
branches. (Some of thisinformation may be irrelevant.)

(a) Which is the fourth state whose successors are attempted to be found by a depth-first search using the heuristic that states
whose names are vowels (a, €, i, 0, or u) are preferred to states whose names are not?

(b) Which is the fourth state whose successors are attempted to be found by a best-first search?

9-7. () For the search graphs of Figures 9-6 and 9-7 we imposed a heuristic that states be ordered when necessary by vertical
height on the page from top to bottom. Explain how this can be considered either a heuristic or an evaluation function.

(b) An evaluation function is just away to assign nonnegative numbers to states (not necessarily a continuous function on any
variable). Explain how an evaluation function can always be constructed to duplicate the effect of any set of heuristics for a
search problem.

(c) Now consider the reverse direction. In a search problem, can you always go from an evaluation function for that problem
to afinite set of (nonnumeric) heuristics that have the same meaning?

9-8. (E) (For people who know something about music) Explain how harmonizing amelody is akind of search. What are the
states and operators? What are some good heuristics? Why is backing up to previous states necessary?

9-9. (a) Consider A* search in which the evaluation function is zero for every state. What is the name for this search?
(b) Consider A* search in which the cost function is zero for every state. What is the name for this search?

(c) Consider A* search in which the evaluation function is zero for every state, and the cost function is the length of the path
to the state. What is the name for this search, besides the name for part (a)?

9-10. (A) Suppose for some search problem for which you want to use the A* search you have found an evaluation function
that never overestimates the cost to agoal state by more than K units. How can you get a guaranteed-optimal solution from
A* search?

9-11. (R,A) Suppose for a search problem there are three operators, Opl, Op2, and Op3. Suppose in the starting state you can
apply any of the three. Then suppose if the first operator was not Op3 you can apply a different operator for the second action
than the first operator. Assume no other operator applications are possible. No goal is given, so a search must eventually
explore every possible state.

(a) Suppose you do breadth-first search using the heuristic that Opl branches are preferred to Op2 branches, and Op2 to Op3.
Draw the state diagram, and label the statesin the order in which you try to find their successors. Uselabelsa, b, ¢, d, e, f, g,
and h.

(b) Suppose you do best-first search for which the evaluation function is

6 after Opl then Op2
4 after Opl then Op3
9 after Op2 then Opl
11 after Op2 then Op3
8 after Opl

7 after Op2
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5 after Op3
10 for the starting state

List the statesin the order in which you try to find their successors.
(c) Suppose you do A* search for which the evaluation function in part (b) and the cost functionis

2 for Opl
5 for Op2
9 for Op3

List the statesin the order in which you try to find their successors.

9-12. (H) Suppose we have computer terminals we wish to move to different floors of athree-floor building. Suppose at the
start:

1. one terminal on the third floor belongs on the second floor;

2. oneterminal on the second floor belongs on the first floor;

3. two terminals on the first floor belong on the third floor;

4. another terminal on the first floor belongs on the second floor.

In the starting state, the elevator is on the first floor. In the goal state, each terminal is on the floor where it belongs. Assume
there are two operators:

A: take one terminal from floor X to floor Y, X different fromY;
B: take two terminals from floor X to floor Y, X different from Y;

Suppose the cost function is the sum over al stepsin the solution of a number that is 1 for trips between adjacent floors, and
1.2 otherwise.

(a) Give aheuristic (nonnumeric reason) for choosing branches during search.

(b) Give alower-bound evaluation function for use with A*.

(c) Would bidirectiona search be agood ideafor this and similar problems? Why?
(d) Approximate the size of the search space for T terminals and F floors.

(e) Draw the state graph after the first three states have had their successors found, in the solution of the given problem using
A*. Use the evaluation function you gave, but not the heuristic. Don't allow returns to previous states. Draw the evaluation
plusthe cost of a state next to it. If ties arise, use a heuristic to choose, and say what heuristic you're using. Hint: use a
compact notation for the state, so you don't have to write alot.

9-13. (A) Consider this problem:
A farmer wants to get alion, afox, agoose, and some corn across ariver. There is aboat, but the farmer can
only take one passenger in addition to himself on each trip, or else both the goose and the corn, or both the fox

and the corn. The corn cannot be left with the goose because the goose will eat the corn; the fox cannot be | eft
with the goose because the fox will eat the goose; and the lion cannot be left with the fox because the lion will
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eat the fox. How does everything get across the river? Assume animals do not wander off when left alone.
() What is the search space?
(b) Give the starting and ending states.
(c) Givethe operators.
(d) Draw thefirst two levels of the search graph. That's two besides the starting state.
(e) What is the average branching factor for these four levels? Disregard branches back to previous states.
(f) Give an upper bound on the size of the search space.
(9) Isthis problem decomposable about an intermediate state?

9-14. Consider the two tasks of solving jigsaw puzzles and solving integration problems symbolically. For each, answer the
following.

(a) What is the search space?

(b) What are the operators?

(c) What is the starting state?

(d) What are the final states?

(e) Isthe task decomposabl e (breakable into subproblems that can be solved independently) about an intermediate state?
(f) Are the operators monotonic (applicable at any time, if applicable once)?

(9) Isone solution needed or the best solution?

(h) What istheinitial branching factor?

(i) How (approximately) does the branching factor vary as the task proceeds?

9-15. (R,A) Consider the problem of designing electrical connections between places on the surface of atwo-dimensional
integrated circuit. Group the surface into square regions with a square grid. Consider this a search problem (asingle search
problem, not a group of search problems) in which there is only one operator: coat with metal the grid cell [X,Y] where X

and Y are integers representing Cartesian coordinates. No grid cells have any metal coating in the starting state. In the goal
state, electrical connections exist between each pair of a specified list of cell pairs; "electrical connection™ means an unbroken
sequence of adjacent coated grid cellslinking a cell pair, while at the same time not linking them to any other cell pair. So for
instance the goal might be to connect [10,20] to [25,29], and simultaneoudly [3,9] to [44,18], but not [10,20] to [3,9]. It's
desired to find the coating pattern that uses the least amount of metal in achieving the goal connections.

() What is the search space?

(b) Is bidirectional search agood idea? Why?
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(c) How does the branching factor vary as forward search proceeds?
(d) Give aheuristic for limiting forward search in this problem.

9-16. Consider the allocation of variables to registers done by an optimizing compiler for a programming language. Consider
this as a search with just one operator: assign (allocate) occurrence N of variable V online L of the program to bein register
R. (Assume that variables must be in registers to use them in programs.) Since computers have a small fixed number of
registers, and a poor alocation requires alot of unnecessary instructions for moving data between registers and main
memory, it's important to choose a good alocation if you want a compiler that generates the fastest possible code. For this
problem, assume you do want to generate the fastest possible code. And assume this means the code with the fewest number
of instructions, to make this simpler.

Notice that you can calculate speed for partial allocations of variables, not just complete allocations. That is, for all unbroken
segments of code that mention register-assigned variables, you can count the number of instructions in the segments. Those
numbers for those code segments can't change as new allocations of other variables are made, because one register alocation
can't affect another.

(a) Which isthe best search strategy?

() depth-first search
(i1) breadth-first search
(iii) best-first search
(iv) A* search

(b) Which isaheuristic for this problem? (only one answer is correct)

(1) "Count the number of machine instructions generated by a solution.”

(i) "Allocate registers to rea-number variables first."

(iii) "Prefer forward chaining to backward chaining when there are few facts and many conclusions.”
(iv) "Don't figure aregister allocation of the same variable occurrence in a particular line twice."

(c) How does the branching factor change as the search proceeds (that is, with level in the search)? (choose only one answer)
(i) it decreases
(i) it decreases or stays the same, depending on the state
(i) it stays the same

(iv) it increases

9-17. Consider the task of proving atheorem from a set of postulates and assumptions. Suppose postul ates, assumptions, and
theorems are all either in the form of "A implies B" or just "A" where A and B are simplelogical statements about the world.
Suppose there is away of taking any two postulates, assumptions, or previously derived theorems to get a conclusion, if any.
For instance, if one statement says"A implies B" and another statement says"A", then we get a conclusion "B"; if one
statement says"A implies B" and another statement says "B implies C", then we get a conclusion "A implies C".

(a) What is the search space?
(b) What is the branching factor, as a function of the number of steps taken?

(c) Give asearch heuristic.
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(d) Give arough evaluation function for guiding search.

(e) Isthe search monotonic?

(f) Is the search decomposabl e about an intermediate state?

(g) Isthis abetter problem for heuristics or for evaluation functions? Explain.

(h) Assuming we had a good approximate evaluation function, would the A* algorithm work well here? Explain.
(i) Would best-first search be a good idea here?

(1) Would bidirectional search be a good idea here?

9-18. Search has some surprising applications to numeric calculations. Consider the search for a numeric formula that
approximates the value of some target variable from mathematical operations on a set of study variables. To test the accuracy
of our approximation formula, we are given a set of data points, Prolog facts of the form

dat a_poi nt ([ <study-vari abl e-val ue- 1>, <st udy-vari abl e-val ue-2>, ... ],
<t arget -vari abl e-val ue>).

That is, the study variable values for a data point are stored in alist. Now think of this search problem as one of creating new
list entries whose values match more closely the target variable values. To get these new study variables, we will do simple
arithmetic operations on the old study variables. For example, take these data points:

data_point([1,2],6).
data_point([2,5], 14).
data_point([3, 2], 10).

Then if we take the sum of the two study variables we can get athird study variable:

data_point([1, 2,3],6).
data _point([2,5,7], 14.)
data-point([3,2,5], 10.)

and if we double those new values we can get

data _point([1,2,3,6],6).
data _point([2,5,7,14],14).
data_point([3,2,5,10], 10).

and we have "explained” the value of the target variable as twice the sum of the original two study variables. In general,
assume the following arithmetic operations are permissible on study variables:

--multiplying by a constant or adding a constant to values of some study variable;

--taking the negatives, squares, square roots, logarithms to the base 2 or powers of 2 of the values of some
study variable;

--taking the sum, difference, product, or quotient of the corresponding values for two different study variables
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of the same data point for al data points.
(a) Considered as a search problem, what is the search space?
(b) What are the operators?
(c) What is the branching factor from any state?

(d) For the following starting data points, draw the first two levels (not counting the starting state as alevel) of the search
graph for the portion including only the "squaring” operation (that is, multiplying values by themselves).

data_point([1,2],1).
data_point([2,0], 16).
data_point([3,1], 81).

(e) Give an evaluation function for this problem (the problem in general, not just the data pointsin part (e)).

(f) If the variable values represent experimental measurements, it will be difficult for aformulato match the target variable
exactly. What then would be a reasonable goal condition?

(g) Give a genera-purpose heuristic (nonnumeric way) for choosing branches well for this general problem (for any set of
data points, not just those in part (d)).

(h) Is bidirectional search agood ideafor this problem? Why?

(i) IsA* search agood ideafor this problem? Why?

(1) Explain why preconditions are necessary for some of the operators.
(K) Is the problem decomposable about an intermediate state? Why?

() Professional statisticians often do this sort of analysis. They claim they don't use search techniques very often. If so, how
(inartificial intelligence terminology) must they be solving these problems?

9-19. (E) (a) Explain how playing chess or checkers requires search.
(b) How isthiskind of search fundamentally different from those that we have considered in this chapter?

Go to book index
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Implementing search

We have postponed consideration of search implementation to this chapter to better focus on the quite different issues
involved. We will present programs for severa kinds of search, working from a search problem described in an abstract
way. WE'll also use search as a springboard to discuss some advanced features of Prolog, including set-collection and
"cut" predicates, and more of the wild and wacky world of backtracking.

Defining a simple search problem

First, we need away to describe a search problem precisely. We ask the programmer to define the following predicates,
the last two optional depending on the desired search strategy:

--successor (<old-state>,<desired new-state>): rules and facts defining this predicate give all possible

immediate branches or state transitions. It's a function predicate with its first argument an input, a state,

and second argument an output, a successor state. Both arguments are state descriptions. We emphasize
that <new-state> must be an immediate successor.

--goalreached(<state>): rules and facts defining this predicate give the stopping conditions for the
search. The argument is an input, a state. Multiple goal states are possible.

--eval(<state>,<evaluation>): rules and facts defining this predicate give the evaluation function. Thisis
afunction predicate taking an input state as first argument, and binding its second argument, an output, to
an estimate of how close that state is to the nearest goal state.

--cost(<state-list>,<cost>): rules and facts defining this predicate give the cost function. Thisisa
function predicate taking an input list of states as first argument, and binding its second argument, an
output, to some nonnegative number representing the sum of the costs along the path through those
states.

Of these four, the first is generally the hardest: it must define all the operators, incorporating their necessary conditions
and describing precisely how they modify a state-description list. (The successor definitions may also include
heuristics about operator use, though Section 10.11 will show a more general way to handle heuristics.) Successor
definitions turn a search problem into a rule-based system, so we can steal ideas from Chapter 7.

Then to actually start searching, we ask that you query something like
?- search(<starting-state> <answer-state-list>).

where the first argument is an input, the starting state (written in the format handled by the successor rules), and the
second argument is an output, the discovered sequence of states, usually in reverse order (that is, from the goal state
back to the start state).

As an example of this Prolog-style definition of a search problem, let's return to the example of Figure 9-1, redrawn as
Figure 10-1. Thisisacity route planning problem in which our starting location isa and our goal location is h. States
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are the labeled intersections, so to define successor we must write afact for every pair of intersections that connect
directly:

successor(a, b).
successor(a, d).
successor (b, c).
successor (b, a).
successor (b, d).
successor(c, b).
successor(d, a).
successor(d, e).
successor(d, g).
successor (e, d).
successor (e, f).
successor (e, g).
successor (f, e).
successor (g, d).
successor (g, e).
successor(h,g).

For the goalr eached condition we need:

goal reached(h).

And to start the program out, we will query a particular search predicate, like
?- dept hsearch(a, Pat h).

to do depth-first search from start state a. (The search predicates we'll define in this chapter are depthsearch,
breadthsear ch (breadth-first), bestsear ch (best-first), and astar search (A* search).) When search is done, the variable
Path is bound to the list of intersections (states) we must travel through. We can use evaluation and cost functionsto
improve search if we like. A good evaluation function for this problem would be the straight-line distance to the goal
(measuring on the map with aruler), giving approximate distances for Figure 10-1 of:

eval (a, 8).
eval (b, 7).
eval (c, 8).
eval (d, 5).
eval (e, 3).
eval (f,1).
eval (g, 2).
eval (h, 0).

The cost definition can be the actual distance along a road, which we can approximate from Figure 10-1 as

cost ([ X],0).
cost([ X, YIL],E) :- piece_cost(X Y,E2), cost([Y|L],E3), Eis E2 + ES.
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pi ece_cost(a, b, 3).
pi ece_cost(a,d,b5).
pi ece_cost(b,c,1).
pi ece_cost (b, d, 2).
pi ece_cost(d, e, 2).
pi ece_cost(d, g, 3).
pi ece_cost (e, f, 2).
pi ece_cost(e,g,1).
pi ece_cost (g, h, 2).
pi ece_cost(X,Y,C :- piece_cost(Y, X O).

A cost definition will often need recursion to handle paths of unknown length.

Defining a search problem with fact-list states

Now let'stry representing a different kind of search problem, one more typical. The previous example was easy
because states could be represented by letters. But often you can't name states in advance, as when you don't know
what states are possible, and you must describe them by lists of facts.

Here's an example. This search concerns avery small part of car repair: putting nuts and washers onto bolts in the right
way. Suppose we have two bolts. In the starting state (the top picture in Figure 10-2), nut a, washer b, and nut c are on
the left bolt in that order, and nut d, washer e, and nut f are on the right bolt in that order. The goal isto get nut c on top
of washer e (as for example in the bottom picture in Figure 10-2). To do this, we must work on one nut or washer at a
time. We can remove one from the top of the nuts and washers on a bolt, place one on the top of the nuts and washers
on abolt, or just place one alone on the flat surface around the bolts. The bolts themselves can't be moved. The four
nuts and two washers are the only parts available.

The only facts that change during the search are those about what parts (nuts or washers) rest on what other parts. Let's
use on(<part-1>,<part-2>,<bolt>) facts for this, where <part-1> and <part-2> are codes for parts, and <part-1>ison
the bolt named <bolt> directly above <part-2>. To keep track of parts not on the bolts, we'll represent them with on
factstoo, by on(<part>,surface,none); parts can only rest on other parts when both are on bolts. To keep track of
empty bolts, we'll use two additional permanent facts, bolt(bolt1) and bolt(bolt2). So any state can be represented as a
list of eight predicate expressions, six specifying the location of each of six parts, and two giving the names of the
bolts. For instance, the starting state (the top picture in Figure 10-2) can be written

[on(a, b, boltl),on(b,c,boltl),on(c, surface, boltl), on(d,e,bolt?2),
on(e,f,bolt2),on(f,surface, bolt2), bolt(boltl), bolt(bolt?2)]

In other words, like a Prolog database on its side. We could start a depth-first search by querying
?- depthsearch([on(a, b, boltl),on(b,c,boltl),on(c,surface,boltl),
on(d, e,bolt2),on(e, f,bolt2),on(f,surface, bolt?2),
bolt (boltl), bolt(bolt2)], Answerpath).

The example final state in Figure 10-2 can be written

[on(a, surface, none), on(b, surface, none), on(c, e, bolt2),
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on(d, surface, none),on(e,f,bolt2),on(f,surface, bolt?2),
bol t (bol t1), bol t (bol t2)]

But let's say we're not so fussy about where every part ends up. Let's say we only want part ¢ to be on part e. Then we
can define the goal state by:

goal reached(S) :- nenber(on(c,e,bolt2),S).

That is, we can stop in state S whenever the facts true for Sinclude on(c,e,bolt2). The member predicate was defined
in Section 5.5, and is true whenever some item is a member of some list:

menmber (X, [ X| L] ).
menmber (X, [Y|L]) :- nmenmber(XL).

Successor rules like the preceding that work on fact lists usually just insert and delete facts from the list describing one
state to get the list describing another. Typically, they only insert and delete afew. So to specify the effect of an
operator, we need only list the fact changes made by an operator--everything else can be assumed constant. In problems
with complicated state descriptions, it may be hard to figure which facts stay the same, because of "side effects’. This
is called the frame problemin artificial intelligence (not to be confused with the knowledge-partitioning "frames' welll
discussin Chapter 12).

By referring to variables, just three successor rules are needed for the bolts problem, as shown in the following code.
Their form is like the append and delete predicate definitions (Section 5.6). The first handles removing parts from
bolts, and the second handles placing parts on bolts. (The intermediate predicate cleartop smplifiesthe rules.) The first
successor rule saysthat if in some state the part X (1) is on abolt and (2) doesn't have another part on it, then a
successor state isone in which X is removed from the bolt and placed on the surface. Furthermore, the rule says that we
can get the successor state from the old state by removing the old fact about where part X was (with the delete
predicate), and adding a new fact that X is alone on the surface (with the stuff in brackets on the rule left side, the last
thing done before the rule succeeds). The second successor rule saysthat if in some state the part X (1) doesn't have
another part on it, and (2) another part Z doesn't have anything on it either, and (3) Z ison abolt, and (4) Z is different
from X, then a possible successor state has X placed on Z. And we can get a description of the new state by removing
the old location of X and adding the new location. The third successor rule saysthat if a bolt is empty in some state,
then we can put on it any part with aclear top.

successor (S,[on( X surface, none)| S2]) :- menber(on(X, Y,B),S),
not (B=none), cleartop(X, S), delete(on(X, Y,B), S, S2).

successor(S,[on(X, Z,B2)|S2]) :- nmenber(on(X, Y,B),YS),
cleartop(X, S), nenber(on(Z, WB2),S), not(B2=none),
cleartop(Z,S), not(X=2), delete(on(X Y,B),S, S2).

successor (S,[on( X surface, B2)| S2]) :- nmenber(on(X Y,B),S),
cleartop(X,S), nenber(bolt(B2),S), not(nmenber(on(Z, WB2),9)),
delete(on(X Y, B), S, S2).

cleartop(Part, State) :- not(nenber(on(X, Part,B), State)).

delete(X [ X L],L).
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delete(X, [ X L],L2) :- delete(XL,L2).
delete( X, [Y|L],[YIL2]) :- not(X=Y), delete(XL,L2).

In the preceding, cleartop just checks that there's nothing resting on a part. The delete predicate comes from Section
5.6: it removes all occurrences of itsfirst argument (an input) from the list that is its second argument (an input),
binding the resulting list to the third argument (the output).

Implementing depth-first search

Prolog interpreters work depth-first, so it isn't hard to implement a general depth-first search facility in Prolog. As with
the programs in Chapter 7, we'll divide code for a search into two files: a problem-dependent or "problem-defining"” file
containing, successor, goalreached, eval, and cost definitions discussed in Section 10.1, and a problem-independent
file containing search machinery. Here is the problem-independent depth-first-search file in its entirety | REFERENCE
1: .FS| REFERENCE 1| When using all the programs in this chapter, be careful not to redefine or duplicate definitions
of the predicate names used here, or you can get into serious trouble. That particularly applies to duplication of the
classic list-predicate definitions member, length, and append. .FE

/* Probl emindependent code for depth-first search */
dept hsearch(Start, Ans) :- depthsearch2(Start,[Start], Ans).

dept hsearch2(State, Statelist, Statelist) :- goalreached(State).
dept hsearch2(State, Statelist, Ans) :- successor(State, Newstate),
not ( menber (Newst ate, Statelist)),
dept hsearch2(Newst at e, [ Newst at e| Statel i st], Ans).

menmber ( X, [ X| L] ).
menmber (X, [Y|L]) :- nmenmber(XL).

Predicate depthsear ch isthe top level. Itsfirst argument is an input, bound to a description of the starting state, and its
second argument is the output, bound when search is done to the solution path in reverse order. The depthsearch rule
just initializes a third argument (the middle one) for the predicate depthsear ch2.

The recursive depthsear ch2 predicate does the real work of the program. Let's first show it declaratively; the next
section will explain it mostly procedurally. Its three arguments are the current state (an input), the path followed to this
state (an input), and the eventual path list found (an output). The first depthsear ch2 rule saysthat if the current stateis
agoal state, bind the output (third argument) to the second argument, the list of states we went through to get here.
Otherwise, the second rule says to find some successor of the current state not previously encountered on the path here
(that is, avoid infinite loops), put this successor on the front of the path list, and recursively search for the goa from the
new state. The member predicate isfrom the last section.

The key to this program is the successor predicate expression in the second depthsear ch2 rule. Backing up in a search
problem means backtracking to that expression. Whenever a state has no successors, or all its successors have been
tried and found not to lead to a goal, the second depthsear ch2 rulefails. Since it's the last depthsear ch2 rule, the
program returns to where it was called--or it "backs up”. If the call of depthsear ch2 was (as usually) arecursive one
from the same second depthsear ch2 rule at the next highest level of recursion, backtracking goesto the not (which like
al nots, can never succeed on backtracking), and then immediately to the successor predicate. If another successor can
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be found for this earlier state, it isthen taken. Otherwise, this invocation of the rule also fails, and backing up and
backtracking happens again.

A depth-first example

Let's ssimulate the depth-first program on an example, to illustrate its procedural interpretation. The previous city-route
exampleisalittle too complicated for a good show, so let's try the following. Suppose in some city (see Figure 10-3)
that two-way streets connect intersection a with intersection b, intersection b to intersection d, and intersection d to
intersection e. Suppose also that one-way streets connect intersection b to intersection ¢, and intersection a to
intersection d. Then the following successor facts hold; assume they're put in this order.

successor(a, b).
successor (b, a).
successor (b, c).
successor(a, d).
successor (b, d).
successor(d, b).
successor(d, e).
successor (e, d).

Assume for this problem that the starting state is a, and there is only one goal state e. Then the problem-definition file
must also include

goal reached(e).
Now let's follow what happens when we query
?- dept hsearch(a, Answer).

and the problem-independent file of the last section isloaded in addition to the previous problem-dependent
specification. The action is summarized in Figure 10-4.

1. The predicate depthsear ch is called with its first argument bound to a and its second argument
unbound. So predicate depthsear ch2 is called with first argument a, second argument [a], and third
argument unbound.

2. The goal is not reached in state a, so the second rule for depthsearch2 istried.

3. In the successor facts, the first successor of state aisb, and b is not a member of the list of previous
states, [a]. So depthsear ch2 is recursively called with first argument b, second argument [b,a], and third
argument unbound.

4. For this second level of depthsear ch2 recursion, the state b isnot a goal state; the first successor listed
for bisc, and cisn'tin thelist of previous states, [b,a]. So we recursively call depthsear ch2, now with

first argument c, second argument [c,b,a], and third argument unbound.

5. For thisthird level of recursion, new state c is hot agoal state nor does it have successors, so both
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rules for depthsear ch2 fail. We must backtrack, "backing up" to the previous state b at the second level,
and hence to the recursive depthsear ch2 call in the last line of the last depthsearch2 rule.

6. The not fails on backtracking, as all nots do, so we backtrack further to the successor predicate in the
second rule for depthsear ch2, which chooses successors. Backtracking to here means we want a
different successor for state b than c. And the only other successor of b isd. So we resume forward
progress through the second depthsear ch2 rule with Newstate bound to d. Thisd isnot in the list of
previously visited states [b,a], so we recursively call depthsear ch2 with first argument d, second
argument [d,b,a] (c was removed in backtracking), and third argument unbound.

7. For this new third-level call, the new state d is not agoal, so we find a successor of it. Itsfirst-listed
successor isb, but b isamember of thelist of previous states [d,b,a], so we backtrack to find another
SUCCESSor.

8. The only other successor fact for d mentions state e. Thisisn't amember of [d,b,a], so we recursively
call depthsear ch2 with the e asfirst argument, [e,d,b,a] as second argument, and an unbound variable
(still) asthird argument.

9. But for thisfourth level of recursion, state eisagoal state, and the goalr eached predicate succeeds.
So thefirst rule for depthsear ch2 succeeds, binding the third argument Statelist (finally!) to thelist of
states visited on the path here in reverse order, [e,d,b,a]. Now all other levels of depthsearch?2 recursion
succeed because the recursive call was the last predicate expression in the rule (in other words, we
always did tail recursion).

10. So query variable Answer isbound to [e,d,b,a].

Notice thisis not the shortest solution to the problem, as is common with depth-first search.

Implementing breadth-first search

We can write code for problem-independent breadth-first search, to load as an alternative to the depth-first problem-
independent code.

Recall from the last chapter that breadth-first search finds states level-by-level (that is, by distance in number of
branches from the starting state). To do this, it must keep facts about all states found but whose successors haven't yet
been found. Those states are an agenda; each represents further work to do. One simple way to implement breadth-first
search is to make the agenda a queue (see Appendix C), a data structure for which the first thing added is always the
first thing removed. We begin with a queue consisting of just the starting state, and anytime we find successors, we put
them on the end of the queue. That way we are guaranteed to not try (find successors of) any states at level [N| until all
states at level |N-1| have been tried.

We can implement agendas in Prolog, by facts with predicate name agenda, one for each unexplored (successors-not-
found) state. To get the effect of a queue, we can put new states at the end of the agenda by the built-in predicate
assertz (introduced in Section 6.1), so the first fact will always be the one that has been on the agenda the longest, and
the first we'll find when we query the agenda facts. Predicate agenda can have two arguments: a state, and the path
followed to reach it. Aswith depth-first search, the second argument is needed because (1) checking states against it
prevents some of the possible infinite loops, and (2) its value for the goal state is the answer to the search problem.
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We also should keep oldagenda facts. These, with the same two arguments as agenda facts, can record "exhausted"
states, states for which we have found all successors. Checking against oldagenda facts before adding a new agenda
fact prevents other infinite loops. This checking also ensures that any path we find to a state S has the fewest number of
branches of any path to S, because it was found first and breadth-first works level by level.

Here is the problem-independent breadth-first search code | REFERENCE 2|, whose predicate hierarchy isgivenin
Figure 10-5. (Those strange exclamation points "!" will be explained in Section 10.7, and the bagof in Section 10.6.)
FS| REFERENCE 2| Thiswon't work for some Prolog dialects, those that can't handle dynamic additions of new
backtracking points with assertz. For such implementations, we can get breadth-first search from the best-first search
program bestsear ch given later in this chapter, by including two extralines with it:

eval(ST) :- time(T), retract(time(T)), T2is T+1, asserta(time(T2)).
eval(S,0) :- not(time(T)), asserta(time(l)). .FE

/* Probl emindependent breadth-first search */

br eadt hsearch(Start, Ans) :- cl eandat abase,
asserta(agenda(Start,[Start])), agenda(State, A dstates),
find_successors(State, ddstates, Newst ate),
goal reached( Newst at e), agenda( Newst at e, Ans),
retract (agenda( Newst at e, Ans) ),
assert a(ol dagenda( Newst at e, Ans) ), neasur eworKk.

find _successors(State, d dstates, Newstate) :-
successor(State, Newstate), not(State = Newstate),
not (agenda( Newstate, S)), not (ol dagenda(Newstate, S)),
assertz(agenda(Newst at e, [ Newst ate| O dstates])).

find _successors(State, d dstates, Newstate) : -
retract (agenda(State, d dstates)),
asserta(ol dagenda(State, O dstates)), fail.

cl eandat abase :- abolish(ol dagenda, 2), abolish(agenda, 2), !.
cl eandat abase :- abolish(agenda, 2), !.
cl eandat abase.

measur ewor k : - bagof ([ X, Y], agenda( X, Y), Aset), |ength(Aset, Len),
bagof ([ X2, Y2] , ol dagenda( X2, Y2), A2set), | ength(A2set, Len2),
wite(Len), wite(' inconpletely exam ned state(s) and '),
wite(Len2),wite(' exam ned state(s).'),!.
measur ewor k : - bagof ([ X, Y], ol dagenda( X, Y), Aset),
| engt h(Aset, Len), wite('no inconpletely exam ned states and '),
wite(Len), wite(' examned state(s).'),!.

l ength([],0).
length([ X L],N) :- length(L,N2), Nis N2+1.
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The predicate breadthsear ch starts by removing any agenda and oldagenda facts remaining from previous searches. It
"seeds’ or starts the agenda with a single item, the starting state. It then spends most of its time bouncing back and forth
between the next three predicate expressions agenda, find_successor s, and goalreached. The agenda retrieves an
agenda state, find_successor s finds a successor of it (as explained in a moment), and goalr eached checks whether it's
done. Most of thetime it won't be. So most of the time it backtracks to the find_successor s call to find another
successor, or if there aren't any more, it backtracks to the agenda call to pick the next state on the agenda. When a goal
state isfound, it cleans up the agenda, and binds the answer variable (the second argument to breadthsear ch as with
depthsear ch) to the path used to get there. Findly, it prints the size of the agenda and the oldagenda to show how

much work it did.

The two find_successor s rules are the key to the program. Function predicate find_successor s has three arguments: the
current state (an input), the path there (an input), and a successor state (an output). The right side of the first
find_successorsrule callsfirst on the successor definition, just asin the depth-first search program. If a successor is
found, it is checked to be (1) not the current state, (2) not on the agenda, and (3) not on the oldagenda. Only if these
tests succeed is the new successor added to the agenda. The first find_successor s rule is repeatedly backtracked into to
generate all the successors of a state; this backtracking is forced by the usually-failing goalr eached expression in
breadthsearch.

The second find_successor s rule applies whenever the first fails, or whenever no further successors can be found for a
state. It removes the "exhausted" state from the agenda and adds it to the oldagenda. Then by afail, it forces the top-
level predicate breadthsear ch to pick anew state to find successors of. As we explained before, the next state picked
will always be the oldest remaining agenda fact because of the assertz.

If the agenda ever becomes empty (that is, there are no new states to be found), then the agenda in breadthsear ch
fails, and then the asserta fails (there's never a new way to assert something), and then the cleandatabase fails (though
we can't explain why thislast for several pages yet). So the interpreter would type no.

As an example, hereisthe result of running the breadth-first program on the bolts problem defined in Section 10.2.
Three solution paths were found, differing only in when part e is removed relative to the removals of partsa and b.
(Carriage returns have been added to improve readability.)

?- breadthsearch([on(a, b, bolt1), on(b,c,boltl),on(c,surface,boltl),
on(d, e, bolt2),on(e, f,bolt2),on(f,surface, bolt2)], Answer).

81 inconpletely exam ned state(s) and 1 exam ned state(s).

Answer =

[[on(c, e, bolt2), on(d, surface, none), on(b, surface, none),
on(a, surface, none),on(e, f,bolt2),on(f,surface, bolt2)],

[on(d, surface, none), on(b, surface, none), on(a, surface, none),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface, bolt2)],

[on(b, surface, none), on(a, surface, none), on(c, surface, boltl),
on(d, e, bolt2),on(e,f,bolt2),on(f,surface,bolt2)],

[on(a, surface, none), on(b, c,boltl),on(c, surface, boltl),
on(d, e, bolt2),on(e, f,bolt2),on(f,surface,bolt2)],

[on(a, b, boltl),on(b,c,boltl),on(c,surface, boltl),
on(d, e, bolt2),on(e, f,bolt2),on(f,surface,bolt2)]] ;

102 inconpletely exam ned state(s) and 2 exam ned state(s).
Answer =
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[[on(c, e, bolt2), on(b, surface, none), on(d, surface, none),
on(a, surface, none),on(e,f,bolt2),on(f,surface,bolt2)],
[on(b, surface, none), on(d, surface, none), on(a, surface, none),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface,bolt2)],

[on(d, surface, none), on(a, surface, none), on(b, c, boltl),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface, bolt2)],
[on(a, surface, none), on(b, c,boltl),on(c, surface, boltl),
on(d, e, bolt2),on(e,f,bolt2),on(f,surface, bolt2)],
[on(a, b, boltl),on(b,c,boltl),on(c,surface, boltl),
on(d, e, bolt2),on(e,f,bolt2),on(f,surface,bolt2)]] ;

152 inconpletely exam ned state(s) and 3 exam ned state(s).
Answer =
[[on(c, e, bolt?2),on(b, surface, none), on(a, surface, none),
on(d, surface, none), on(e, f,bolt2),on(f,surface, bolt2)],
[on(b, surface, none), on(a, surface, none), on(d, surface, none),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface, bolt2)],
[on(a, surface, none), on(d, surface, none), on(b, c, boltl),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface, bolt2)],
[on(d, surface, none), on(a, b, boltl),on(b,c,boltl),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface, bolt2)],
[on(a, b, boltl1),on(b,c,boltl),on(c,surface, boltl),
on(d, e,bolt2),on(e, f,bolt2),on(f,surface, bolt2)]]

Collecting all items that satisfy a predicate expression

A feature of the breadthsear ch program we haven't explained is the bagof predicate in the measurework rules. This
predicate we used before in Chapter 8 to implement "or-combination”, and it is built-in in most Prolog dialects (though
easily defined in Prolog). It collectsinto alist all the values for some variable that satisfy a predicate expression, much
liketheforall (defined in Section 7.12) in reverse. Predicate bagof takes three arguments. an input variable, an input
predicate expression containing that variable, and an output list to hold all possible bindings of that variable which
satisfy that expression. (Some variants of bagof delete duplicatesin the result.)

Here's an example. Suppose we have this database:

boss_of (mary, ton).

boss_of (mary, di ck).

boss_of (di ck, harry).

boss_of (di ck, ann).

Suppose we want alist of al people that Mary is the boss of. We can type
?- bagof ( X, boss_of (mary, X), L)

and the interpreter will type

L=[ t om di cK]
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and X won't be printed because it's just a placehol der.

We can put, within the expression that is the second argument to bagof, variables besides the one we are collecting; the
interpreter will try to bind them too. So if, for the preceding database, we type

?- bagof (X, boss_of (Y, X), L).

the interpreter will type

Y=mary, L=[tom dick]

for itsfirst answer. If we then type a semicolon, it will type
Y=di ck, L=[harry, ann]

for its second answer.

Thefirst argument to bagof can be alist. That is, we can search for a set of values satisfying a predicate instead of just
one value. For instance, we can query

?- bagof ([ X, Y], boss_of (X, Y),L).

and receive the answer

L=[[mary, ton],[mary, di ck],[dick, harry], [di ck, ann]]

This query form is used in the measurework rulesin the breadthsear ch program.

The bagof predicate can be defined this way (provided you have no other predicate named zzz in your program):
bagof (X, P, L) :- asserta(zzz([])), fail.

bagof (X, P,L) :- call(P), zzz(M, retract(zzz(M),

asserta(zzz([ X M), fail.
bagof (X, P,L) :- zzz(L), retract(zzz(L)).

The cut predicate

We still must explain those strange exclamation points (the "!") in the breadthsear ch program. These are a specia
built-in predicate of no arguments called the cut, whose meaning is exclusively procedural. The cut always succeeds
when the interpreter first encountersit, but has a special side effect: it prevents backtracking to it by throwing away the
necessary bookkeeping information. This can improve the efficiency of Prolog programs, but it is also hecessary to
make some programs work properly, those for which backtracking just doesn't make sense.

Usually the cut predicate expressionislast in arule, asin cleandatabase and the two measurework rulesin the
breadthsear ch program. It can be paraphrased as: "Don't ever backtrack into this rule. What's more, don't ever try
another rule to satisfy the goal that thisrule tried to satisfy. That goal isdead. So fail it." (Note that a cut has no effect
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on the next call of the rule, even acall with the same arguments as before: the prohibition of backtracking just applies
to the call in which the cut was encountered.) So a cut symbol forces behavior like that of a subprocedurein a
conventional programming language, in that once a subprocedure is done it can only be reentered by a different call--
except that a Prolog "subprocedure” is all the rules with the same | eft-side predicate name, not just asingle rule. So a
cut at the end of arule means you want only one solution to the query of that rule. This often istrue for "existential
guantification” queries in which we check existence of something of a certain type, and we don't care what. For
instance, the member predicate from Section 5.5

menmber ( X, [ X| L] ).
menmber (X, [Y|L]) :- nmenmber(XL).

is often used thisway, when it is queried with both arguments bound. For instance:
?- menber(b,[a,b,c,b,e a,f).

Recursion will find thefirst b in the list and the interpreter will type yes. If we were to type a semicolon, recursion
would find the second occurrence of b and the interpreter would type yes again. But finding that second occurrence
doesn't make sense in most applications; the answer to the query must be the same, after all. A backtracking member is
uselessin our depth-first and breadth-first search programs, where member is enclosed in anot, since the Prolog
interpreter doesn't backtrack into nots. And backtracking into member is unnecessary whenever there can't be
duplicatesin alist. (But we do need a backtracking member in the bolts example of Section 10.2, to choose aternative
parts to move by querying member with an unbound first argument.) A non-backtracking member can be obtained by
just inserting a cut symbol in the backtracking member :

si ngl emenber (X, [ X|L]) :- !.
singl emenmber (X, [Y|L]) :- singlenmenber(XL).

We don't need a cut symbol at the end of the second rule, because when it fails no more possibilities remain.
We don't actually need a cut symbol to define singlemember, for we could say equivalently:

si ngl emenber (X, [ X| L]) .
singl emenber (X, [ Y| L]) :- not(X=Y), singlenmenber(XL).

But thisis slower because the extra expression not(X=Y) must be tested on every recursion; the cut predicate
expression is done at most once for any query.

A related use of the cut predicate is to do something only once instead of repeatedly. For instance, here's the predicate
from Section 5.6 that deletes all occurrences of anitem X from alist L:

delete(X [].[1)-
delete(X, [ X|L],M :- delete(X, L, M.
delete(X, [Y|L],[YIM) :- not(X=Y), delete(X, L, M.

Suppose we want a predicate that deletes only the first item X from list L. We can remove the recursion in the second
rule, remove the not(X=Y) in the third rule, and insert a cut symbol:
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del eteone( X [].[1).
del eteone( X, [ X L], L) :- I.
del eteone( X, [Y|L],[YIM) :- deleteone(X,L,M.

The cut symbol isimportant here, because if we just omit it like this:

del eteone( X, [].[1]).
del eteone( X, [ X L], L).
del eteone( X, [Y|L],[YIM) :- deleteone(X,L,M.

then deleteone will give a correct first answer, but wrong subsequent answers on backtracking, just like the similar
mistake-making delete discussed in Section 5.6.

The cut predicate can also be used merely to improve efficiency. Recall the definition of the maximum of alistin
Section 5.5:

max([ X], X).
max([ X[ L], X) :- max(L, M, X>M
max([ X L], M :- max(L, M, not(X>M.

When the first two rulesfail, the computation of the maximum of alist is done twice: once in the second rule, and once
in the third rule. Thisiswasteful. So we can defineit:

max([X],X) :- I.
max([ X L], M :- max(L, M, not(X>M, !.
max([ X| L], X).

Here we've changed the order of the last two rules and removed the redundant max call. The cuts guarantee that if we
ever backtrack into max, we won't start taking the third rule when the second rule was taken before, and thereby get
wrong answers.

A cut predicate can be put in the middle of arule. Then it means that backtracking is allowed to the right of it, but that
if the interpreter ever triesto backtrack to itsleft, both the rule and the goal that invoked it will fail unconditionally.

Nothing inlifeisfree, so it's not surprising that the efficiency advantages of the cut predicate have the associated
disadvantage of restricting multiway use (see Section 3.3) of predicate definitions. That's because the cut is a purely
procedural feature of Prolog, with no declarative meaning. But if you're sure you'll only query a definition with one
particular pattern of bindings, multiway use isnot an issue, and cut predicates can be used freely to improve efficiency.

Iteration with the cut predicate (*)

The cut predicate provides away to write iterative Prolog programs in away more general than the forall and doall of
Section 7.12 and bagof of Section 10.6. It gives a sometimes better way to repeat things than by backtracking, since
backtracking doe things in reverse order, and that can be confusing or even wrong.

To get atrue "do-until, or in other words to repeatedly query some predicate expression Pred until some other
predicate expression done holds, query predicate iter ate with argument Pred:
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iterate(Pred) :- repeat, iterate2(Pred), done.
iterate2(Pred) :- call(Pred), !.

repeat .

repeat :- repeat.

Hererepeat is a predicate that always succeeds, and what's more, always succeeds on backtracking (unlike 1=1 which
always succeeds once, but fails on backtracking because it can't succeed in a new way). The repeat is built-in in many
Prolog diaects, but it's easy to define as you see.

Predicate iterate will hand the expression Pred to iterate2 for execution using the call predicate explained in Section
7.12. Then iter ate checks the done condition, which usually fails. At this point, the cut in iterate isimportant, because
it prevents backtracking into iterate2 and Pred. So iterate2 fails, and the interpreter returns to the repeat. But repeat
always succeeds anew on backtracking (it just recurses once more as a new way to succeed), and so the interpreter
returnstoiterate2, and Pred is executed again in the forward direction. So the cut predicate forces the interpreter to
execute Pred like within aloop in a conventional programming language: always forward. (Note that Pred can contain
arguments.)

One disadvantage of the preceding is that iterate can never fail. Thiswould cause an infinite loop if done has abug
preventing it from ever succeeding. So we might distinguish donegood and donebad conditions, both user-defined, for
when the iteration should stop with success and failure respectively:

iterate(Pred) :- repeatcond, iterate2(Pred), donegood.
iterate2(Pred) :- call(Pred), !.

r epeat cond.

repeatcond :- not(donebad), repeatcond.

Another kind of iteration increases a counter at each iteration, like the "FOR" construct in Pascal and the "DQO"
construct in Fortran which iterate for K=1to N:

foriterate(Pred,N) :- asserta(counter(0)), repeat, counter(K),
K2 is K+1, retract(counter(K)), asserta(counter(K2)),
iterate2(Pred), K=<N

iterate2(Pred) :- call(Pred), !.
repeat .
repeat :- repeat.

To access the counter at any time inside the rules invoked by calling Pred, you query predicate counter .

Implementing best-first search (*)

Now we can show our best-first search program. To use it you need (besides successor and goalreached definitions) a
definition of afunction predicate eval of two arguments. Aswe said in Section 10.1, the first argument to eval isan
input state, and its second is an output number, a nonnegative evaluation of that state.

The best-first program keeps an agenda of states like the breadth-first program, but each agenda fact has athird
argument holding the evaluation function value for the state. (It makes sense to compute this when we find the state and
put it on the agenda, so we only do it once per state.) And when we select a state from an agenda with the
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pick_best_state predicate, we must take the state with the minimum evaluation function value, not just the first one on
the agenda. Our best-first search program aso hasiteration in several places where the breadth-first search program
used recursion, so it's amore efficient program. Here's the best-first search program, whose predicate hierarchy appears
in Figure 10-6:

/* Probl emindependent best-first search */
best search(Start, Goal pathlist) :- cleandatabase,
add _state(Start,[]), repeatifagenda,
pi ck_best state(State, Pathlist),
add_successors(State, Pathlist), agenda(State, Goal pathlist, E),
retract (agenda( St ate, Goal pathlist, E)), neasureworKk.

pi ck_best state(State,Pathlist) :-
assert a( best st at e( dunmy, dumry, dumy) ),
agenda(sS, SL, E), beststate(S2, SL2, E2), special |ess_than(E, E2),
retract (beststate(S2, SL2, E2)), asserta(beststate(S,SL,E)), fail.
pi ck_best state(State,Pathlist) :- beststate(State, Pathlist, E),
retract (beststate(State, Pathlist,E)), not(E=dumy), !.

add_successors(State, Pathlist) :- goalreached(State), !.

add_successors(State, Pathlist) :- successor(State, Newstate),
add_state(Newstate, Pathlist), fail.

add_successors(State, Pathlist) :-
retract (agenda(State, Pathlist,E)),
asserta(usedstate(State)), fail.

add_state(Newstate, Pathlist) :- not(usedstate(Newstate)),
not (agenda( Newst ate, P, E)), eval (Newst at e, Enew),
asserta(agenda( Newst at e, [ Newst at e| Pat hl i st], Enew)), !.
add_state(Newstate, Pathlist) :- not(eval (Newst ate, Enew)),
wite(' Warning: your evaluation function failed on state '),
wite(Newstate), nl, !.

[* Wility functions */

repeati f agenda.
repeati fagenda :- agenda(X Y, Z), repeatifagenda.

speci al |l ess_than(X, dumy) :- !.
special _less than(X, Y) :- X<V.

cl eandat abase :- checkabol i sh(agenda, 3), checkabolish(usedstate, 1),
checkabol i sh(beststate, 1), checkabolish(counter,1).
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checkabol i sh(P, N) :- abolish(P, N, !.
checkabol i sh(P, N).

measurewor k : - countup(agenda(X, Y, Z),NA), countup(usedstate(S), NB),
wite(NA), wite(' inconpletely exam ned state(s) and '),
wite(NB),wite(' exam ned state(s)'), !.

countup(P,N) :- asserta(counter(0)), call(P), counter(K),
retract (counter(K)), K2 is K+1, asserta(counter(K2)), fail.
countup(P,N) :- counter(N), retract(counter(N)), !.

The top-level bestsear ch predicate iterates by repeatedly picking a state from the agenda. It initializes and cleans up
around a kernel of commands repeatedly invoked. But the iteration is done differently from the breadthsear ch
program, with the bestsear ch bouncing among ar epeatifagenda predicate on the left, the pick_best_state predicate,
and an add_successor s on the right. The repeatifagenda is an instance of the repeatcond discussed in the last section.

The pick_best_state chooses the minimum-evaluation state by iterating over the agenda states; the cut predicate at the
end of its definition ensures that it finds only one such state per call. The add_successor s checks whether some state S
isagoal state (then succeeding), and otherwise adds all the acceptable successors of S to the agenda (then failing); the
predicate add_state runs the necessary acceptance checks on a new state before adding it to the agenda. When
add_successor s finally succeeds, the path associated with its state argument must be the solution, so thisisretrieved
and bound to the answer Goalpathlist.

As an example, let's use best-first search on the bolts problem of Section 10.2. We need an evaluation function. Our
goal isto get part c on part e, so we could take the sum of the number of parts on top of both c and e. That is, we could
measure the degree of "burial" of each. But then many states have evaluation zero. Instead, let's try:

eval (S,0) :- goalreached(S).
eval (S,N) :- burial(c,S N1), burial (e, S,N2), Nis NL+N2+1.

burial (P,S,0) :- cleartop(P,S).
burial (P,S,N :- nmenber(on(X,P,B),S), burial (X S, N2), Nis N2+1.

Running bestsear ch on the same starting state as before, we get the third answer for breadth-first search:

?- bestsearch([on(a, b,boltl),on(b,c,boltl),on(c, surface, boltl),
on(d, e, bolt2),on(e, f,bolt2),on(f,surface,bolt2)],A).
23 inconpletely exam ned state(s) and 4 exam ned state(s)
A=[[on(c, e, bolt2), on(b, surface, none), on(a, surface, none),
on(d, surface, none),on(e,f,bolt2),on(f,surface,bolt2)],
[on(b, surface, none), on(a, surface, none), on(d, surface, none),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface,bolt2)],
[on(a, surface, none), on(d, surface, none), on(b, c,boltl),
on(c, surface, boltl),on(e, f,bolt2),on(f,surface,bolt2)],
[on(d, surface, none), on(a, b, boltl),on(b,c, boltl),
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on(c,surface,boltl),on(e, f,bolt2),on(f,surface, bolt?2)],
[on(a, b, boltl),on(b,c,boltl),on(c,surface, boltl),
on(d, e, bolt2),on(e, f,bolt2),on(f,surface, bolt2)]]

But look how many fewer states were found--27 (23+4) versus 82. That's more efficient search.

Implementing A* search (*)

A* search islike best-first except we must add path cost to the evaluation function. So as we said, the user must define
acost function predicate with two arguments, an input path and an output holding the computed cost of that path.

Our A* program isintended to be forgiving. So it still works if you don't give it alower-bound cost function, though
you may need to type semicolons to get the right (lowest-cost) answer. Also without a lower-bound evaluation
function, the first path found to any state S may not be lowest-cost, so if we find alower-cost path to Slater, we must
revise the path lists of everything on the agenda mentioning S.

Here's the program (whose predicate hierarchy is summarized in Figure 10-7):

/* Probl emindependent A* search code. */

/* Note: "cost" nust be nonnegative. The "eval" should be a | ower */
/* bound on cost in order for the first answer found to be */

/* guaranteed optimal, but the right answer will be reached */

/* eventually otherw se. */

astarsearch(Start, Goal pathlist) :- cl eandatabase,
add_state(Start,[]), repeatifagenda,
pi ck_best state(State, Pathlist),
add_successors(State, Pathlist), agenda(State, Goal pathlist, C D),
retract (agenda( St ate, Goal pathlist,C D)), neasurework.

pi ck_best _state(State, Pathlist) :-
assert a(best st at e( dumy, dumry, dumy) ),
agenda(sS, SL, C,D), beststate(S2,SL2,D2), special _I|ess_than(D, D2),
retract (beststate(S2,SL2,D2)), asserta(beststate(S,SL,D)), fail.
pi ck_best state(State,Pathlist) :- beststate(State, Pathlist,D),
retract (beststate(State, Pathlist,D)), not(D=dumy), !.

add_successors(State, Pathlist) :- goalreached(State), !.

add_successors(State, Pathlist) :- successor(State, Newst at e),
add_state(Newstate, Pathlist), fail.

add _successors(State, Pathlist) :-
retract (agenda(State, Pathlist,C D)),
asserta(usedstate(State,C)), fail.

/* If you are sure that your evaluation function is always
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/* a | ower bound on the cost function, then you can delete the */

[* first rule for "agenda_check" and the first rule for */
/* "usedstate check”, and delete the entire definitions of */
/* "fix_agenda", "replace_front", and "append". */
add_state(Newstate, Pathlist) :- cost([Newstate|Pathlist], Cnew),
agenda_check( Newst at e, Cnew), !,
usedst at e_check( Newst at e, Pat hl i st, Cnew), !,
eval (Newst ate, Enew), D is Enew + Cnew,
asserta(agenda( Newst ate, [ Newstate| Pathlist], Cnew, D)), !.
add_state(Newstate, Pathlist) :-
not (cost ([ Newst at e| Pat hl i st], Cnew)),
wite(' Warning: your cost function failed on path list '),
wite(Pathlist), nl, !.
add_state(Newstate, Pathlist) :- not(eval (Newstate, Enew)),
write(' Varning: your evaluation function failed on state '),
wite(Newstate), nl, !.

agenda_check(S, C) :- agenda(sS, P2, C2,D2), C<C2,

retract (agenda(s, P2, C2,D2)), !.
agenda_check(S,C) :- agenda(S, P2, C2,D2), !, fail.
agenda_check(S, C).

usedstate check(S,P,C)